• Title/Summary/Keyword: Water use-Flood control-water quality

Search Result 17, Processing Time 0.032 seconds

Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir (탁수조절을 위한 소양호 선택취수설비 설치 효과 분석)

  • Chung, Se Woong;Park, Hyung Seok;Yoon, Sung Wan;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.

Evaluation of estuary reservoir management based on robust decision making considering water use-flood control-water quality under Climate Change (이수-치수-수질을 고려한 기후변화 대응 로버스트 기반 담수호 관리 평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Kwak, Jihye;Kim, Jihye;Kang, Moonseong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.419-429
    • /
    • 2023
  • The objective of this study was to determine the management water level of an estuary reservoir considering three aspects: the water use, flood control and water quality, and to use a robust decision-making to consider uncertainty due to climate change. The watershed-reservoir linkage model was used to simulate changes in inflow due to climate change, and changes in reservoir water level and water quality. Five management level alternatives ranging from -1.7 El.m to 0.2 El.m were evaluated under the SSP1, 2, 3, and 5 scenariosof the ACCESS-CM2 Global Climate Model. Performance indicators based on period-reliability were calculated for robust decision-making considering the three aspects, and regret was used as a decision indicator to identify the alternatives with the minimum maximum regret. Flood control failure increased as the management level increased, while the probability of water use failure increased as the management level decreased. The highest number of failures occurred under the SSP5 scenario. In the water quality sector, the change in water quality was relatively small with an increase in the management level due to the increase in reservoir volume. Conversely, a decrease in the management level resulted in a more significant change in water quality. In the study area, the estuary reservoir was found to be problematic when the change in water quality was small, resulting in more failures.

The study on the development of intelligent optical communication system to monitor flood and water pollution (홍수 및 수질 오염 감시용 지능형 고속 광 통신 시스템 개발에 관한 연구)

  • Lee, Jin-Young
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.351-358
    • /
    • 2012
  • This study is aimed at suggesting optical communication equipment that can deliver high quality video information in high speed, to efficiently handle the flood and water pollution in the river basin. This system is cheaper than existing equipment, and can monitor optical Internet as well as the condition of equipment. Generally, the communication equipment to prevent flood is installed in an unmanned control box and operated by the flood control office situated at the fiver mouth in a long distance section. Therefore, it is hard to promptly cope with communication interruptions, which occur by the cutting or aging of the optical cable. Under the circumstances, this study suggested an efficient system that can deliver high quality video information in high speed (Optical Transmission Convert System) by using optical fiber. The system also solves problems by making use of automatic protection switching (APS) when an accident happens. Its real-time monitoring function gives notice of the problem-occurring points. The system is expected to be widely used in various areas such as intelligent traffic systems.

Effect of Cultivation Activity in Daecheong Lake Flood Control Site on Water Quality (대청호 홍수조절지 내 경작활동이 수질에 미치는 영향)

  • Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • The excessive use of fertilizer and compost in agricultural land increases the accumulation of nutrients in soil. The surplus nutrients in soil transported through surface and sub-surface flow can lead to water pollution problems and algal bloom. Moreover, nutrient accumulation and continuous crop cultivation changes the physical structure of the soil, which increases the potential of nutrient. The cultivation in the Daecheong Lake reservoir area may have a direct effect on the lake's water quality due to leaching and releasing of nutrients when water level rises. This research was carried out to analyze the physical and chemical properties of soil in the agricultural areas surrounding Daecheong Dam reservoir to provide basic data available for the establishment of Daecheong Lake water quality management measures. The soil of the Daecheong Lake reservoir was classified as sandy Loam, where surplus nutrients can be transported. Chemical compositions in the soil were found to be significantly affected by use of different fertilizer amounts. Nutrient outflow occurred during spring rainfall events from the rice paddy fields, whereas excess nutrients from summer to fall seasons originated from dry paddy fields. Nutrient outflow from dry paddy fields is mainly from sub-surface flow. Organic agricultural wastes from agricultural land and excessive vegetation inside the river was also evaluated to contribute to the increase in organic matter and nutrients of the river. The results can be used to select the priority management area designation and management techniques in the Daecheong Lake for water quality improvement.

Comparative Analysis on Seasonal Water Quality Factors in Multipurpose Dams and Agricultural Reservoirs (농업용저수지와 다목적댐의 계절별 수질인자의 특성 비교분석)

  • Kim, Eungseok;Sim, Kuybum;Kim, Taeseung;Jeong, Donghwan;Yoon, Johee;Kang, Dookee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2012
  • This study has performed comparative analysis on characteristics of reservoirs in their use through correlation analysis on seasonal variation of water quality factors in agricultural reservoirs and multipurpose dams. Agricultural reservoirs show the high relationship between Chl-a and other water quality factors while the correlation among COD, BOD, and SS is strong in multipurpose dams. Agricultural reservoirs have the high relationship between various water quality factors in season such as Chl-a and pH ($R^{2}=0.294$) in Spring, pH and water temperature ($R^{2}=0.246$) in Summer, and Chl-a and BOD ($R^{2}=0.435$) in Fall, and between COD and BOD ($R^{2}=0.370$) in Winter, respectively, for Sapgyo reservoir while Chl-a and T-P ($R^{2}=0.739$) in Spring, T-P and SS ($R^{2}=0.876$) in Summer, and Chl-a and SS ($R^{2}=0.600$) in Fall, and between COD and SS ($R^{2}=0.998$) in Winter, respectively, for Seokmun reservoir. Boryeong dam has the strong relationship between T-P and SS ($R^{2}=0.511$) in Spring while the relation between COD and SS is high in other seasons with the values of $R^{2}$ of 0.362, 0.665, and 0.500 in Summer, Fall, and winter, respectively. The first and second water quality factors in relationship are COD and BOD in Sapgyo and Seokmun reservoirs, which is similar to the characteristics in Winter for multipurpose dams. Chl-a has no relationship with other water quality factors in Boryeong dam in operation for both flood control and low water regulation purposes. The result of this research is expected to provide contributions to the seasonal water quality control and analysis on characteristics for each reservoir by monitoring.

Hierarchical Compression Technique for Reflectivity Data of Weather Radar (기상레이더 반사도 자료의 계층적 압축 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lim, Sanghun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.793-805
    • /
    • 2015
  • Nowadays the amount of data obtained from advanced weather radars is growing to provide higher spatio-temporal resolution. Accordingly radar data compression is important to use limited network bandwidth and storage effectively. In this paper, we proposed a hierarchical compression method for weather radar data having high spatio-temporal resolution. The method is applied to radar reflectivity and evaluated in aspects of accuracy of quantitative rainfall intensity. The technique provides three compression levels from only 1 compressed stream for three radar user groups-signal processor, quality controller, weather analyst. Experimental results show that the method has maximum 13% and minimum 33% of compression rates, and outperforms 25% higher than general compression technique such as gzip.

Cyclic Change of Phytoplankton Community in Mankyeong River Estuary prior to the Completion of the Saemankeum Seawall (새만금 방조제 완공 이전 만경강 하구역 식물플랑크톤 군집의 주기적인 변동)

  • Kim, Young-Geel;Park, Jong-Woo;Jang, Keon-Gang;Yih, Won-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Eutrophicated water fed through Mankyeong River and Dongjin River into the new Saemankeum Lakemight seriously affect the water quality and phytoplankton community in the lake. To obtain control reference data for the later studies on environmental changes due to the construction of the Saemankeum Sea Wall, we performed a monthly investigation on the physico-chemical properties of the water and phytoplankton community at 3 stations in the Mankyeong River Estuary over 14 months starting from September 1999. Water temperature ranged from $0.3{\sim}32.9^{\circ}C$ due to the typical seasonal variations in temperate on the coasts and salinity exhibited a wide annual range of $0.2{\sim}33.7$ psu along with regular and huge hourly variations according to tidal cycles. Inorganic nutrients were supplied from rivers to the monitoring station and the whole lake. The average concentration of total-N, $6.99\;mg{\cdot}l^{-1}$, was higher than the water quality for agricultural use with peak values occurring in winter. Species composition showed a seasonal succession pattern, where a high diversity was observedin summer and autumn and vice versa in winter. Hourly variations of water properties in the "Mankyeong bridge" Station were quite regular and well in accordance with the daily tidal cycles. The different degree of sea water intrusion during the flood tide at each of the 3 stations exhibited a different range and variation pattern of water temperature and salinity throughout a day. Hourly changes in species composition were in harmony with the daily tidal cycles, resulting in extremely variable spatio-temporal variation.

Effects of Hydrogeomorphology and Watershed Land Cover on Water Quality in Korean Reservoirs (우리나라 저수지 수질에 미치는 수문지형 및 유역 토지피복의 영향)

  • Cho, Hyunsuk;Cho, Hyung-Jin;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • In order to study the water quality status and its causal environmental factors, the water quality variables of chemical oxygen demand (COD), chlorophyll a (Chl a), Total phosphorus (TP), and total nitrogen (TN), the hydrogeomorphologic variables of water level fluctuation, total water storage, dam elevation, watershed area, and shoreline development index, and the land cover variables of forest, agricultural area, and urbanized area in the watershed were investigated in total 73 reservoirs with various operational purposes, water level fluctuation and geographical distribution in South Korea. The water quality was more eutrophic in the reservoirs of the more urbanized and agricultural area in the watershed, the low altitude, the narrow water level fluctuation, the narrowed watershed area, and the more circular shape. In terms of the purposes of reservoir operation, the reservoirs for agricultural irrigation were more eutrophic than the reservoirs for flood control. The results of the variable selection and path analysis showed that COD determined by Chl a and TP was directly affected by water level fluctuation and the shoreline development of the reservoirs. TP was directly affected by the urbanized area of the watershed which was related to the elevation of the reservoir. TP was also influenced by the water level fluctuation and the shoreline development. In conclusion, the eutrophication of the reservoirs in Korea would be influenced by the land use of the watershed, hydrological and geographical characteristics of the reservoir, water level fluctuation by the anthropogenic management according to the reservoir operation purpose, and the location of the reservoirs.

Prediction of Water Quality Effect of Watershed Runoff Change in Doam Reservoir (유역유출 변화에 따른 도암댐 저수지 수질 영향 예측)

  • Noh, Hee Jin;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.975-985
    • /
    • 2013
  • In this research, the integrated modeling system by coupling of a watershed model, a reservoir model, and a river model has been constructed in Doam reservoir watershed. Because of domestic climate characteristics, it is inevitable to construct the dam for control of flood, water use, and power production due to the heavy rain in the summer. Especially, when the dam is constructed on the stream for these kinds of purpose, it is necessary to consider this region as one watershed and also to make the integrated system for simulation and management. In this study, SWAT model was constructed for watershed modeling and EFDC-WASP model was constructed for simulating the hydrodynamic and water quality of the reservoir and the downstream in Doam dam watershed. Also, the water quality improvement equipment for demonstration was applied in the upstream part of Doam reservoir, which shows the applicability of the developed integrated modeling system.

A Study on the Characteristics of Planning of Hwa-sung from the Point of Water System (수체계로 본 수원화성 건설의 계획적 특성에 관한 연구)

  • Kang, In-Ae
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.4
    • /
    • pp.137-147
    • /
    • 2011
  • This study aims to find out the construction process and planning characteristics of Suwon and Hwa-sung in 18th century from the point of water system. This study has an explanatory approach. The planning intents in the water system was driven out by analyzing various planning elements in relation to water system in the process of constructing Hwa-sung in 18th century. Using Entire Map of Hwa-sung, land registration map made in 1911 and topographic map of 1/10,000 scale made in 1917, water system and interpretation of spatial structure in Hwa-sung were analyzed. The results are as follows(Planning characteristics of the water system in Haw-sung in 18th century are as follows). Firstly, in determining the spatial structure and location of Hwa-sung, water system had an important role. Secondly, integrated drainage system was planned by the organization of natural and artificial water stream. Thirdly, the main street system and land use structure were planned in relation with water system. Fourthly, territoriality of main area was planned with water stream. Fifthly, ponds were constructed for flood control and they had important role as landscape elements. Sixthly, water stream was used as intentional BiBo element. As a result of the study, the weater system of Hwa-sung in 18th century was planned by the organization of natural and artificial water stream in relation with the location of new town and wide area's spatial structure, street system, land use structure, territoriality of main area, terriflood control, water quality protection, landscape, 비보 and urban daily life.