• Title/Summary/Keyword: Water treatment plant (WTP)

Search Result 53, Processing Time 0.026 seconds

Effect of Residual Chlorine Concentration on Water Pipe Corrosion and Corrosion Control Plan (수도관 부식에 대한 잔류염소 농도 영향 및 부식제어 방안)

  • Han, Keum-Seok;Park, Ju-Hyun;Park, Young-Bok;Kim, Seong-Jae;Kim, Hyen-Don;Choi, Young-June;Choi, In-cheol;Hong, Seong-Ho
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.12-19
    • /
    • 2018
  • Langelier Index (LI) is used as a tap water corrosiveness index. Residual chlorine in tap water induces corrosion inside water pipes. This study takes a deeper look into the effect of residual chlorine in water pipes. Comparison between tap waters of Y and K water treatment plant (WTP) shows that the LI index of K WTP is lower than that of Y. However, the corrosion rate of Y WTP is higher than that of K WTP. This means that the higher the concentration of residual chlorine in tap water, the higher the corrosion rate of pipe materials. When calcium hydroxide was added to tap water, the corrosiveness index was improved and thus the corrosion rate reduced. It is possible to increase the disinfection efficiency by increasing the duration of residual chlorine and suppressing the rust generation of water pipes and to supply minerals. A guideline for corrosion control with residual chlorine should be set up. The effects of residual chlorine should be included in the corrosiveness index of tap water.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

Formation Characteristics of DBPs by Chlorination in Water Treatment Plant (정수장에서 소독부산물의 생성특성)

  • Rhee, Dong-Seok;Min, Byoung-Seob;Park, Sun-Ku;Kim, Joung-Hwa;Rhyu, Jae-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • This study was carried out to investigate the formation of DBPs(Disinfection By-products) such as trihalomethane(THMs) and haloacetic acid(HAAs) by chlorination in raw water and finished water of Water Treatment Plant(WTP). The formation of THMs was increased with the increase of pH and reaction time. HAAs was found as a high formation at a pH 7 and low formation at pH 9. THMFP(Trihalomethane Formation Potential) was the highest formation potential in raw water of Pu-1 and the lowest in raw water of Pa-1. In case of HAAFP(Haloacetic acid formation potential), So-1 showed the highest value, while Pa-1 showed the lowest value. It was investigated the relationship between HAAs and organic matters which were described as DOC(dissolved organic carbon) and $UV_{254}$. In both DOC and $UV_{254}$ versus HAAFP, Pu-1 showed the good correlation coefficients($r^2$) with 0.95 and 0.84, respectively. For three WTP investigated, DBPs(THMs + HAAs) was shown over the range of $42.00{\sim}49.36{\mu}g/L$. This result might be due to the different characteristic of organic matters in raw water and the difference of chlorine dosage for a water treatment.

Pollutant Budget Change Due to Construction of Wastewater Treatment Plant in Masan Bay (하수처리장 건설에 의한 마산만의 오염물질 수지변화)

  • 조홍연;채장원;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2000
  • The effects of the WfP construction are analysed quantitatively based on the pollutant budget change in Masan Bay. The reduction effects of the watershed pollutant loads are clearly shown, while the positive influence of the water quality (WQ) are not substantial because the pollutant load also increased continusly after WTP construction. The reduction effects of the COD, 55, TN and TP parameters are 17.6%, 68.9%,66.7%, and 38%, respectively in Masan Bay (zone I). The environmental condition of the northern part of Chinhae Bay (zone ll), however, is slowly degraded because of the direct and indirect effects - effluents discharge from the WTP and pollutants release from the sediment, respectively.

  • PDF

Impacts of stream water quality and fish histopathology by effluents of wastewater treatment plant (하수종말처리장 배출수에 의한 하천 수질 특성 및 어류의 조직병리학적 영향)

  • Kim, Hye-Jin;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.678-690
    • /
    • 2020
  • In this study, the histological changes of Zacco platypus exposed to discharge from a Wastewater Treatment Plant (WTP), which is a point source, for a long time (2 to 3 years) were compared to the same species at a reference site (Ref.). Overall, tissues displayed various lesions in samples obtained at the point where discharge water from the point source was mixed. In the skin tissue, mucus cells from the epithelial layer expanded to the multilayered epithelium, indicating the immune system was activated. Epithelial cell detachment and proliferation were most prominent in the gills, which may have adversely affected circulation and respiration. Our data suggest immune system collapse was due to stimulation by aquatic substances. Both the fish phase analysis and the water quality analysis demonstrated depreciated conditions at the point source as compared to the reference stream, supporting the histological health evaluation results. These data together suggest a histological approach can also be used to assess water quality, and to an even higher degree when combined with other existing methods. Given the presented evaluation, improvement in the water quality of water discharged from WTP's is required.

Corrosion Control in Water Distribution System using Lime and Carbon Dioxide(I) - Determination of Optimum Operational Conditions in Lime Adding Process (소석회와 CO2를 이용한 상수관로의 부식제어(I) - 소석회 주입공정의 최적 운전인자 도출)

  • Sohn, Byung-Young;Byun, Kyu-Sik;Kim, Young-Il;Lee, Doo-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • The pH & alkalinity adjustment method by lime and carbon dioxide($CO_2$) for corrosion control in water distribution system was investigated to determine the optimum operational condition in lime adding process in water treatment plant(WTP). The mixing time at dissolution tank and sedimentation time at saturator for maintaining optimal turbidity condition of lime supernatant were 60~75 minutes and 75~95 minutes, respectively. There was no difference according to $CO_2$ adding methods such as $CO_2$ saturated water or $CO_2$ gas. But, $CO_2$ saturated water could be convenience at WTP in terms of pH control and quantitative dosing. To minimize generation of calcium carbonate products, the short time interval between adding of lime and $CO_2$ is most important. The lime should be added below 32 mg/l for preventing pH rising and generation of calcium carbonate products at the heating condition.

A study on the corrosion control of tap water by lime and carbon dioxide (소석회와 이산화탄소를 이용한 수돗물 부식성 제어에 관한 연구)

  • Cheong, Won-Suk;Kim, Jin-Keun;Park, Duk-Joon;Kim, Sun-Wook;Jeong, Sang-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.193-199
    • /
    • 2011
  • A method to improve internal corrosion control efficiency by adding lime and carbon dioxide, which, in turn increases the Langelier Index (LI) for filtered water at a conventional drinking water treatment plant (WTP) was investigated. The SJ WTP (Q=100,000 $m^{3}$/d) has been operating an internal corrosion control system since 2006. The system has achieved stable operation through technical development and trial and error over a period of several years. As a result of the operation, the LI of treated water has increased up to 29% by adjusting pH of filtered water to 7.8 with the addition of lime and carbon dioxide. Coupon tests in the distribution system indicated that the corrosion rate has been delayed by 24% when the internal corrosion method was implemented. The increase of LI by lime and carbon dioxide has been proven to be a practical method for controlling corrosion.

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

Incorporation of water sludge, silica fume, and rice husk ash in brick making

  • Hegazy, Badr El-Din Ezzat;Fouad, Hanan Ahmed;Hassanain, Ahmed Mohammed
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.83-96
    • /
    • 2012
  • The water sludge is generated from the treatment of water with alum. Disposing of sludge again to the streams raises the concentrations of aluminum oxides in water, which has been linked to Alzheimer's disease. The use of water treatment plant (WTP) sludge in manufacturing of constructional elements achieves both the economical and environmental benefits. Due to the similar mineralogical composition of clay and WTP sludge, this study investigated the complete substitution of brick clay by sludge incorporated with some of the agricultural and industrial wastes, such as rice husk ash (RHA) and silica fume (SF). Three different series of sludge to SF to RHA proportions by weight were tried, which were (25: 50: 25%), (50: 25: 25%), and (25: 25: 50%), respectively. Each brick series was fired at 900, 1000, 1100, and $1200^{\circ}C$. The physical and mechanical properties of the produced bricks were then determined and evaluated according to Egyptian Standard Specifications (E.S.S.) and compared to control clay-brick. From the obtained results, it was concluded that by operating at the temperature commonly practiced in the brick kiln, a mixture consists of 50% of sludge, 25% of SF, and 25% of RHA was the optimum materials proportions to produce brick from water sludge incorporated with SF and RHA. The produced bricks properties were obviously superior to the 100% clay control-brick and to those available in the Egyptian market.

Thickening Characteristics of Residual from a Ceramic Membrane Water Treatment Plant (세라믹 막 정수공정에서 발생하는 배출수의 농축특성)

  • Bae, Byung-Uk;Shen, Xing-Hai
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.764-767
    • /
    • 2009
  • For a more effectively designed gravity thickener, thickening experiments were conducted for residuals produced by a ceramic membrane water treatment plant (WTP). Two kinds of residuals, one from backwashing (BW) and the other from chemically enhanced backwashing (CEB) procedure, were separately collected during a pilot plant experiment and their limiting solid flux ($SF_L$) measured. Batch thickening experiments showed that the BW and CEB residual had $SF_L$ of 10 and $25kg/m^2{\cdot}d$, respectively. Continuous operation of a pilot-scale gravity thickener proved that a mixed BW and CEB residual could be successfully thickened at the solid loading rate (SLR) of $12kg/m^2{\cdot}d$, allowing the concentration of the thickened residual to be about $15kg/m^2{\cdot}d$. From the experimental results and consideration of the seasonal thickening characteristics of the residual, SLR of $15kg/m^2{\cdot}d$ was proposed as a design parameter for full-scale gravity thickeners.