• 제목/요약/키워드: Water temperature

검색결과 14,595건 처리시간 0.041초

소형 이동식 모듈주택의 벽면에 냉수배관 매설에 의한 냉방온도 특성 (Characteristics of Cooling Temperature of Cold Water Pipes Buried in the Wall of a Small Mobile Modular House)

  • 조동현
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.110-117
    • /
    • 2022
  • A chiller cooler absorbs the thermal energy of water to generate cold water and supplies the generated cold water to a cold water pipe buried in the wall of a small mobile modular house to greatly increase the cooling area. An attempt was made to reduce the required cooling time significantly. A small chiller cooler suitable for the cooling load of a small mobile modular house with an area less than 3.3 m2 was employed. When cooling is done during summer using a chiller cooler installed outdoors, heat absorption energy loss occurs in the cold water pipe owing to the high temperature. To address this, a study was conducted to reduce the endothermic energy loss significantly. As the mass flow rate of the cold water flowing inside the cold water pipe increased, the temperature decrease gradient of the cold water increased. From the start of the cooling operation, the air temperature of the small mobile modular house decreased linearly in proportion to the operation time. Furthermore, the temperature of the air inside the small mobile modular house decreased in proportion to the increase in the flow of water inside the cold water pipe.

기후변화 시나리오별 한강유역의 수계별 수온상승 가능성 (Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin)

  • 김민희;이정희;성경희;임철수;황원재;현승훈
    • 한국물환경학회지
    • /
    • 제38권1호
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.

온수지에 의한 관개용수의 수온상승 효과에 관한 연구 (A Study on the Effects of Temperature Rise of Irrigation Water Passed Through the Warm Water Pool.)

  • 연규석;최예환
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4323-4337
    • /
    • 1977
  • The study was to estimate the effect of the rise of water temperature in the warm water pool and to make contribution to the establishment of reducing to a damage of cool water as well as to the planning for warm water pool. This observation was performed in Wudu warm water pool located at Wudu-Dong of Chuncheon for two years from 1975 to 1976. The results were showed as follows; 1. The daily variation of water temperature was the least for inset (No.1; 0.6$^{\circ}C$) the second for middle overflow (No2: 3$^{\circ}C$, No.3; 2.3$^{\circ}C$) and another for outflet (No.4; 3.6$^{\circ}C$, No.5; 3.8$^{\circ}C$) And the highest reaching time of water temperature in each block was later about 1 hour than the time at which air temperature happend in the daytime. So, the variation of water temperature was sensitive to the variation of air temperature 2. The monthly variation of water temperature at each measuring point was plotted to be increased with increase in air temperature till August (Mean monthly rising degree; No.1; 1.15$^{\circ}C$, No.2; 1.7$^{\circ}C$, No.3; 1.73$^{\circ}C$, No.4; 2.08$^{\circ}C$, No.5; 2.0$^{\circ}C$), and expressed gradually descended influence upon water temperature after August. 3. The mean temperature of inflow folwed in warm Water pool was 7.5∼12.5$^{\circ}C$, and outflow temperature was described as 13.4∼22.5$^{\circ}C$ to be climbed. And So, the rising interval of water temperature was shown as 6.7∼10.4$^{\circ}C$. 4. The correlation between the rising of water temperature and the weather condition was found out highly significant. As the result, their correlation coefficents of water temperature depending on mean air temperature, ground temperature, wind velocity and relative humidity were to be 0.93, 0.90, - 0.83 and 0.71 respectively. But there was no confrimation of the correlation on the clouds, sunlight time, volume of evaporation, and heat capacity of horizontal place. 5. The water temperature of balance during the period of rice growing in Chuncheon district was shown as table 10, and the mean of whole period was calculated as about 23.7$^{\circ}C$. 6. The observed value of the outflow temperature passed through the warm water pool was higher than that of computed, the mean difference between two value was marked as 1.15$^{\circ}C$ for blockl, 1.18$^{\circ}C$ for block2, and 0.47$^{\circ}C$ for block3, respectivly. Therefore, the ratio on the rising degree between the observed and computed were shown as 53%, 44%, and 18%, mean 38% through each block warm water pool (referring item $\circled9$ of table 11,12, and 13). Accordingly, formula (4) in order to fit for each block warm water pool was transfromed as follow; {{{{ { theta }_{w } - { theta }_{ 0} =[1-exp LEFT { { 1-(1+2 varphi )} over {cp } CDOT { A} over { q} RIGHT } ] TIMES ( { theta }_{w } - { theta }_{ 0}) TIMES C }}}} Here, correction coefficinent was computed 1.38, and being substituted 1.38 for C in preceding formula, the expected water temperature will be calculated to be able to irrigate the rice paddy. As the result, we can apply the coefficient in order to plan and to construct a new warm water pool.

  • PDF

발생기 온도저감 및 고온열수 획득을 위한 Hybrid GAX 사이클 해석 (Analysis of HGAX Cycle for Reducing the Generator Temperature and Enhancing the Hot-Water Temperature)

  • 강용태;윤희정;조현철
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.127-133
    • /
    • 2002
  • The objectives of this paper are to develop an advanced GAX cycle named HGAX (Hybrid Generator Absorber heat exchanger) cycle, and to study the effect of key parameters on the cycle performance and the hot-water temperature from the condenser. New types of the HGAX cycle are developed by adding a compressor between the generator and the condenser- Type C (performance improvement and reduction of the generator temperature) and Type D (Hot-water temperature application). The solution temperature in the generator outlet is reduced to 168$^{\circ}C$ with the COP improvement of 19% compared to the standard GAX cycle. The hot-water temperature from the condenser is raised to 106$^{\circ}C$ for panel heating (Ondol heating) application.

The Development Measuring System of Temperature Effect to Produce Electric Power of Solar Cell

  • Sadmai, Ong-art
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.104-113
    • /
    • 2015
  • This paper focuses on a temperature effects on a PV panel which has been installed in Thailand. The main objective is cleaning PV panels and reduce temperature of PV panel by water injects from waterway and experimental results of PV power what it is difference. This project is designed by PLC control system which water injects and control PV temperature, In addition, this project consists of hardware and software such as water pump, water injection and PLC control has been automatically and it can be control system manually. The automatic control system is working when PV temperature rises up over 45 degree Celsius after that the pumping machine would inject water to the surface of PV panels and it must be stop when the PV panel temperature comes down less than 45 degree Celsius. The result of actual experimental found that the control system has been done correctly under specify condition. The experimental has been shown electrical data before and after water injects on PV system found that the electrical power a bit increases and The energy has been taken from PV panel less than energy consumption equipment of control system which taken to operate the water injecting system.

자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I) (A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I))

  • 박경석;신진식;이경우
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF

저온 폐열 활용을 위한 2중 효용 2단 흡수식 히트펌프 시뮬레이션 (Simulation of a Double Effect Double Stage Absorption Heat Pump for Usage of a Low Temperature Waste Heat)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7736-7744
    • /
    • 2015
  • 막대한 산업용 에너지가 폐열로 버려지는 상황에서 폐열, 특히 저온 폐열의 효과적인 이용은 매우 중요하다. 본 연구에서는 $160^{\circ}C$의 고온 열원과 $17^{\circ}C$ 저온 하수열을 사용하여 $50^{\circ}C$의 온수를 $70^{\circ}C$로 승온시키며 성적계수는 1.6을 만족하는 2중 효용 2단 흡수식 히트펌프 사이클을 고안하였다. 제 1 재생기에서 증발한 냉매 증기는 제 1 응축기에서 응축하면서 제 2 재생기에서 다시 냉매를 발생시킨다. 이 냉매는 제 2 응축기를 거쳐 제 2 증발기에 모아진다. 이 냉매의 일부는 제 1 증발기로 이동하여 저온 열원을 받아들이고 제 1 흡수기를 거쳐 제 2 증발기에 공급된다. 제 2 증발기를 나온 냉매는 제 2 흡수기에서 용액에 흡수된다. 이 때 온수의 온도는 제 2 응축기와 제 2 흡수기에서 승온된다. 시행착오를 통하여 승온 $20^{\circ}C$, 성적계수 1.6을 만족시키는 유량과 열교환기의 UA 값을 도출하였다. 성적계수는 고온수의 온도가 증가할수록, 온수의 온도가 감소하고 유량이 증가할수록, 폐온수의 온도와 유량이 증가할수록, 용액 순환량이 감소할수록 증가한다. 반면 온수의 승온온도는 고온수의 온도가 증가할수록, 온수의 온도가 증가하고 유량이 감소할수록, 폐온수의 온도와 유량이 증가할수록, 용액 순환량이 증가할수록 증가한다. 또한, 열교환기의 UA 값이 증가할수록 성적계수 및 온수 승온 온도도 증가한다.

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.

사육수의 고수온 스트레스가 벤자리(Parapristipoma trilineatum)에 미치는 생리학적 영향 (Physiological Responses of the Chicken Grunt Parapristipoma trilineatum to High Water Temperature Stress)

  • 김기혁;홍성원;문혜나;여인규
    • 한국수산과학회지
    • /
    • 제51권6호
    • /
    • pp.714-719
    • /
    • 2018
  • We investigated the effects of water temperature on physiological parameters in the chicken grunt Parapristipoma trilineatum. At high temperature, the aspartate aminotransferase (AST) and the alanine aminotransferase (ALT) levels were increased, suggesting that high temperature induced hepatic damage. In addition, total protein (TP) was high at high water temperatures, which were considered stressful in the breeding environment. At high water temperatures, triglycerides (TG) were low due to increased metabolic activity, which decreased the blood TG levels as TG were used as an energy source. There was no significant difference in the plasma osmolality or the blood ion concentrations with water temperature. In generally, lysozyme, a factor in innate immunity, increased with water temperature. However, lysozyme activity tended to decrease with increasing water temperature, but the difference was not significant. These results suggested that the decrease of biophylaxis at high temperature was affect the growth or survival of the population.

다관형 잠열축열장치의 축열특성연구 -물을 매체로 한 축열 및 방열과정 분석- (Study on the Thermal Storage Characteristics of a Multi-capsule type LTES System -Analysis for Heat Charging and Discharging Process for Water Flow-)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • 제19권1호
    • /
    • pp.62-69
    • /
    • 1994
  • This study was designed to seek information on the heat charging and discharging characteristics of a multi-capsule type LTES(Latent Heat of Fusion Thermal Energy Storage) system, and especially prediction equation of outlet water temperature from the system. During heat charging process, the water temperature in the LTES tank increased very slowly in comparison with a predicted one and was kept near the melting point of the PCM for about 25 minutes. During heat discharging process, the latent heat discharging period of the outlet water temperature became longer as the inlet water temperature became higher and/or mass flow rate became lower. The dimensionless temperature of the outlet water was predicted by linking three equations of ${\theta}=1.1Exp(-{\tau}/0.82)$, ${\theta}=-0.06{\tau}+0.3$, ${\theta}=0.8Exp(-{\tau}/1.4)$ ($r^2{\leq}0.88$) depending on discharging period regardless of mass flow rates on the case of the inlet water temperature at $21.5^{\circ}C$.

  • PDF