• Title/Summary/Keyword: Water tank structure

Search Result 191, Processing Time 0.021 seconds

Laboratory Experimentals and Numerical Analysis for Development of a Atmospheric Mixed Layer (대기 혼합층 발달 과정의 모형 실험과 수치 해석)

  • 이화운
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.17-26
    • /
    • 1993
  • The layer that is directly influenced by ground surface is called the atmospheric boutsdary layer in comparison with the free atmosphere of higher layer. In the boundary layer, the changes of wind, temperature and coefficient of turbulent diffusion in altitude are large and have great influences an atmospheric diffusion. The purpose of this paper is to express the structure and characteristics of development of mixed layer by using laboratory experiment and numerical simulation. Laboratory experiment using water tank are performed that closely simulate the process of break up of nocturnal surface inversion above heated surface and its phenomena are analyzed by the use of horizontally averaged temperature which is observed. The result obtained from the laboratory experiment is compared with theoretical ones from ; \textsc{k}-\varepsilon numerical model. The results are summarized as follows. 1) The horizontally averaged temperature was found to vary smoothly with height and the mixed layer developed obviously being affected by the convection. 2) The mean height of mixed layer may be predicted as a function of time, knowing the mean initial temperature gradient. The experimental values are associated well with the theoretical values computed for value of the universal constant $C_r$= 0.16, our $C_r$ value is little smaller than the value found by Townsend and Deardoru et al.

  • PDF

A study of Fluid Drag Forces Acting on Artificial Steel Reefs (강제어초에 작용하는 유체항력에 관한 연구)

  • Shin, Hyun-Kyoung;Yang, Chang-Sub;Lee, Hyung-Lark;Kim, Tae-Moo;Eom, Ho-Seob
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.273-276
    • /
    • 2002
  • Many artificial steel reefs are being built in Japan, however, in Korea, only few steel reefs were manufactured by POSCO, recently. In order to develop their novel types suitable for marine environments near the Korean Peninsula, it is very important to carry out model tests in the initial design stage. In the Ocean Engineering Wide Tank($L{\times}B{\times}D=30{\times}20{\times}2.5m$) and the Circulating Water Channel of the University of Ulsan, Korea, fluid drag forces acting on models of steel reefs with different sizes are measured in waves and currents. Also numerical predictions based on the Wavier-Stokes equation are made and compared with experimental results.

  • PDF

Characteristics of Bubble-driven Flow by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visualization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent ($\lambda_{ex}=540nm,\;\lambda_{em}=560nm$) particle images are acquired by a PCO 10bit high-speed CCD camera (1280$\times$1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.

An Experimental Study of Wave Overtopping Characteristics on the Structure for Wave Overtopping Power Generating System (월파형 파력발전구조물의 월파 특성에 관한 실험적 연구)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.649-655
    • /
    • 2006
  • Waves progressing into the coastal area can be amplified, swashed and overtopped by a wave overtopping control structure, and it converts the kinetic energy of the waves to the potential energy with a hydraulic head above the mean sea level by conserving the overflow in a reservoir. Then the potential energy in the form of hydraulic head can be converted to electric power utilizing extremely low-head hydraulic turbine. This study aims to find the most optimal shape of wave overtopping structure which maximizes overtopping volume rate of sea water. Laboratory experiments for the performance evaluation of wave overtopping control structures were carried out in three dimensional wave tank, and the three dimensional structure models with planar wave concentration shapes(B/b) were manufactured into five classes, which were optimized by cross sectional parameters of the structure, ie, length of ramp(l), gradient of inclined ramp($cot{\phi}$) and freeboard height of the wave overtopping structure($h_e$) proposed by Shin and Hong(2005). The wave overtopping discharges were investigated with 20 incident wave conditions and wave directions of $0^{\circ},\;15^{\circ},\;30^{\circ}$.

The Synchronous Control System Design of a Movable Weir using Coupling Structure (커플링구조를 이용한 가동위어의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • The weir to regulate water level in a tide generation tank is above and below carried by two electric cylinders which are mounted on right and left of weir itself. In this case, a movement difference between right and left cylinder causes unbalance of weir and friction between weir and guide. And then, the weir will not be sent to target point. In this study, a synchronous control system is developed to take accurate and quick equilibrium of the weir. The control system based on cross coupled structure consists of two I-PD controllers and a lead compensator. Each of the I-PD controllers is designed in order that the electric cylinder may exactly follow the reference signal without overshoot and input saturation. And the lead compensator is designed to achieve stable and accurate synchronization. Finally, the simulation result shows that the designed synchronous control system is effective for elimination of synchronous error.

Re-distribution of Welding Residual Stress Due to Tensile Pre-load and Its Effects on Fatigue Strength in Padding Plate Weldment (Padding plate 용접구조의 인장 정하중 이력에 의한 용접잔류응력 변화 및 피로강도에의 영향)

  • S.W. Kang;Y.W. Kim;W.S. Kim;D.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.75-82
    • /
    • 2001
  • Static loadings on ship structure induced either by water pressure before service such as a tank test and ballasting or by cargo pressure during first laden voyage cause relatively much greater stress than dynamic loadings induced by wave. With these static pre-loadings, the initial residual stresses around welded joint, where fatigue strength is concerned(in most cases, where stress concentration occurs) are expected to be shaken-down in a great extent by the elasto-plastic deformation behavior of material. Therefore, it is more resonable to assess the fatigue strength of ship structure with S-N data which have taken into account the effect of shaken-down residual stresses(re-distributed stresses) on the fatigue strength. In this research work, the re-distribution of residual stresses by the tensile pre-loading is measured using an ordinary sectioning method for specimens of padding plate weldment. Fatigue tests are performed also to evaluate the fatigue strength of the both as-welded and pre-loaded specimens.

  • PDF

Study on Roll Motion Characteristics of a Rectangular Floating Structure in Regular Waves (규칙파 중 사각형 부유식 구조물의 횡동요 운동특성에 대한 연구)

  • Kim, Min-Gyu;Jung, Kwang-Hyo;Park, Sung-Boo;Lee, Gang-Nam;Park, Il-Ryong;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • This study focused on the roll motion characteristics of a two-dimensional (2D) rectangular floating structure under regular beam sea conditions. An experiment was conducted in a 2D wave tank for a roll free decay test in calm water and the roll motion in a range of regular waves with and without heave motion to investigate the motion response and heave influence on the roll motion. A numerical study was carried out using Reynolds-averaged Navier Stokes (RANS)-based CFD simulations. A grid convergence test was conducted to accurately capture the wave condition on the free surface based on the overset mesh and wave forcing method. It was found in the roll free decay test that the numerical results agreed well with the experimental results for the natural roll period and roll damping coefficient. It was also observed that the heave motion had an impact on the roll motion, and the responses of the heave and roll motion from the CFD simulations were in reasonable agreement with those from the experiment.

Maximum Value Calculation of High Dose Radioiodine Therapy Room (고용량 방사성옥소 치료 병실의 최대치 산출)

  • Lee, Kyung-Jae;Cho, Hyun-Duck;Ko, Kil-Man;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • Purpose: According to increment of thyroid cancer recently, patients of high dose radioiodine therapy were accumulated. Taking into consideration the acceptance capability in the current facility, this study is to calculate the maximum value of high dose radioiodine therapy in patients for treatment. Materials and Methods: The amount and radioactivity of waste water discharged from high dose radioiodine therapy in patients admitted at present hospital as well as the radiation density of the air released into the atmosphere from the high dose radioiodine therapy ward were measured. When the calculated waste water's radiation and its density in the released air satisfies the standard (management standard for discharge into water supply 30 Bq/L, management standard for release into air 3 $Bq/m^3$) set by the Ministry of Education, Science and Technology, the maximum value of treatable high dose radioiodine therapy in patients was calculated. Results: When we calculated in a conservative view, the average density of radiation of waste water discharged from treating high dose radioiodine therapy one patient was 8 MBq/L and after 117 days of diminution in the water-purifier tank, it was 29.5 Bq/L. Also, the average density of radiation of waste water discharged from treating high dose radioiodine therapy two patients was 16 MBq/L and after 70 days of diminution in the water-purifier tank, it was 29.7 Bq/L. Under the same conditions, the density of radiation released into air through RI Ventilation Filter from the radioiodine therapy ward was 0.38 $Bq/m^3$. Conclusion: The maximum value of high dose radioiodine therapy in patients that can be treated within the acceptance capability was calculated and applied to the current facility, and if double rooms are managed by improving the ward structure, it would be possible to reduce the accumulated treatment waiting period for radioiodine therapy in patients.

  • PDF

The development for flooding prevention apparatus of electrical equipment using air pressure (공기압을 이용한 전기설비 침수 방지 장치 개발에 관한 연구)

  • Kim, Gi-Hyun;Jean, Hyun-Jae;Lee, Sang-Ick;Bae, Suk-Myong;Lee, Jae-Yong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • Inundation of substation and ground power equipment breaks out every summer season in low-lying downtown and low-lying shore by localized heavy rain, typhoon and tidal wave. In case inundation excluding the exchanging cost of equipment, it occurs a great economic and social loss owing to recovery time and events of electric shock occur by inundation electrical equipment(Pad-mounted Transformer and Switch). In case of installing the power equipment at flood danger territory, we are necessary to the product development, the product is that water does not come in the inside the power equipment. Product of pressure maintaining are established on the basic frame and sensor operates at the flooding occurrence and is maintained a shutting tightly structure and it is a method. The product which is produced the reliability of the product it confirmed a flooding yes or no from the condition which puts in the water tank and it verified. We estimate that loss cost which is caused by with flooding and the power failure will be diminished if it is addition to advances the reliability evaluation and a security of the flood protection product.

  • PDF

High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake (메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성)

  • Park, Suin;Jeon, Junbeom;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.