• Title/Summary/Keyword: Water supply resources

Search Result 892, Processing Time 0.032 seconds

Estimating the water supply capacity of Hwacheon reservoir for multi-purpose utilization (다목적 활용을 위한 화천댐 용수공급능력 평가 연구)

  • Lee, Eunkyung;Lee, Seonmi;Ji, Jungwon;Yi, Jaeeung;Jung, Soonchan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.437-446
    • /
    • 2022
  • In April 2020, the Korean government decided to operate the Hwacheon reservoir, a hydropower reservoir to supply water, and it is currently under pilot operation. Through the pilot operation, the Hwacheon reservoir is the first among the hydropower reservoirs in Korea to make a constant release for downstream water supply. In this study, the water supply capacity of the Hwacheon reservoir was estimated using the inflow data of the Hwacheon reservoir. A simulation model was developed to calculate the water supply that satisfies both the monthly water supply reliability of 95% and the annual water supply reliability of 95%. An optimization model was also developed to evaluate the water supply capacity of the Hwacheon reservoir. The inflow data used as input data for the model was modified in two ways in consideration of the impact of the Imnam reservoir. Calculating the water supply for the Hwacheon reservoir using the two modified inflows is as follows. The water supply that satisfies 95% of the monthly water supply reliability is 26.9 m3/sec and 24.1 m3/sec. And the water supply that satisfies 95% of the annual water supply reliability is 23.9 m3/sec and 22.2 m3/sec. Hwacheon reservoir has a maximum annual water supply of 777 MCM (Million Cubic Meter) without failure in the water supply. The Hwacheon reservoir can supply 704 MCM of water per year, considering the past monthly power generation and discharge patterns. If the Hwacheon reservoir performs a routine operation utilizing its water supply capacity, it can contribute to stabilizing the water supply during dry seasons in the Han River Basin.

Water, Energy, and Food Nexus: Preserving Local Resources through Inter-Basin Trade

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.153-153
    • /
    • 2018
  • Water-Energy-Food (WEF) nexus is a new holistic resources management concept that considers the interconnections among resources for sustainable resources planning and management. The current challenge is to fulfill the required demand in the lack of available resources. A traditional way to provide more available resource is by increase in production, but it caused increment of indirect demand of other interlinked resources. Importing resources from other area (where local supply is redundant) is another option to secure local resources with additional economic expenditure. The WEF nexus-trading model adapts the previously developed nationwide nexus simulation model with additional input parameters and functions to simulate trading scenarios. In general, the analysis starts with the quantification of local resources deficit (potential importing amount) and redundancy (potential exporting amount) of each area. Then, a trade module is initiated by determining possible donor area and importation amount. Finally, the nexus simulation for all area is re-run to determine final resources supply-demand results including the trading amount. The trade option provides an opportunity to meet local demands without draining local resources. However, the production capability of donor area may limit the importation amount. The newly developed trade option allows more alternatives for stakeholders to determine resources management plans.

  • PDF

낙동강 달서지구 강변 여과수 취수에 관한 예비 연구

  • Kim, Hyeong-Su;Park, Seung-Gi;Jeong, Chan;Baek, Geon-Ha;Won, I-Jeong;Shin, Heung-Seop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.93-97
    • /
    • 2002
  • This research introduces some preliminary results of bank filtering intake method adopted in Dalseo area, Nakdong River. This intake method has been planned to supply water resources of 41,000 ㎥/day to Goryeong-Gun and Seongju-Gun in 2016. It is believed that the bank filtering intake method can afford to supply 41,000 ㎥/day amount of water resources and that the raw water quality using the method has more advantages in water treatment than direct surface water intake. Even though the safety yield about individual vertical well is roughly estimated to about 2,000 ㎥/day, it is desirable to decrease the safety yield to about 1,000 ㎥/day in the consideration of long term and simultaneous well pumpings and other unknown factors. Ongoing study will give basic data and new techniques to solve the problems appearing in application of bank filtering method as well.

  • PDF

Network Modeling of Paddy Irrigation System using ArcHydro GIS (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF

Evaluation of hydropower dam water supply capacity (I): individual and integrated operation of hydropower dams in Bukhan river (발전용댐 이수능력 평가 연구(I): 북한강수계 개별 댐 및 댐군 용수공급능력 분석)

  • Jeong, Gimoon;Choi, Jeongwook;Kang, Doosun;Ahn, Jeonghwan;Kim, Taesoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.505-513
    • /
    • 2022
  • Recently, uncertainty in predicting available water resources is gradually increasing due to climate change and extreme weather conditions. Social interest in water management such as flood and drought prevention is also increasing, and after the unification of water management implemented in 2018, domestic water management is facing a major turning point. As part of such strengthening of water management capabilities, various studies are being conducted to utilize a hydropower dam for flood control and water supply purposes, which was mainly operated for hydroelectric power generation. However, since the dam evaluation methods developed based on a multi-purpose dam are being applied to hydropower dams, an additional evaluation approach that can consider the characteristics of hydropower dams is required. In this study, a new water supply capacity evaluation method is presented in consideration of the operational characteristics of hydropower dams in terms of water supply, and a connected reservoir simulation method is proposed to evaluate the comprehensive water supply capacity of a dam group operating in a river basin. The presented method was applied to the hydropower dams located in the Bukhan River basin, and the results of the water supply yield of individual dams and multi-reservoir systems were compared and analyzed. In the future, the role of hydropower dams for water supply during drought is expected to become more important, and this study can be used for sustainable domestic water management research using hydropower dams.

Assessment of the Potential Water Supply Rate of Agricultural Irrigation Facilities Using MODSIM - For Geum River Basin - (MODSIM을 이용한 농업용 수리시설의 용수공급율 평가 - 금강권역을 중심으로 -)

  • Ahn, So-Ra;Park, Geun-Ae;Shin, Young-Ho;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.825-843
    • /
    • 2009
  • To prepare for agricultural droughts, the potential discharge to the water supply of irrigation facilities during drought periods is important. Using the MODSIM (Modified SIMYLD) model, water balance networks that consider irrigation facilities were designed for the Geum River Basin, and the potential discharge to the agricultural water supply of irrigation facilities were evaluated by running the model using data for 36 years (1967-2002). It was found that agricultural water deficiencies occurred during the drought years more than in the other years. The agricultural water deficiencies in 1994, 1995, and 2001, the representative drought years, were 745.8 million m$^3$, 661.1 million m$^3$, and 696.8 million m$^3$, respectively. The average potential discharge to the water supply of the sub-basin was 99.1 % in the cases of municipal and industrial water, and 84.4 % in the case of agricultural water. The potential discharge to the water supply in 1994, 1995, and 2001 were 74.8 %, 79.2 %, and 77.9 %, respectively, which are lower than those of the other years' sub-basin average. In the analysis of the contribution of each irrigation facility, the contributions of pumping stations and diversions were calculated as 32.5 %, and of culverts and wells, 4.0 %. During the drought periods, the pumping stations and diversions contributed to a certain level.