• Title/Summary/Keyword: Water solvent

Search Result 2,082, Processing Time 0.052 seconds

Preparation of Hydrophobic Antimicrobal Compounds Encapsulated Nanoparticles Using Alkoxysilane-functionalized Amphiphilic Polymer Precursor and Their Antimicrobial Properties (실란 기능화 양친성 고분자 전구체를 이용한 소수성 항균물질 담지 나노 입자 제조 및 항균 특성)

  • Kim, Nahae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • In this study, nanoparticles which encapsulated hydrophobic antimicrobial compounds with 50wt% of payload and 70%of solid content were prepared. These nanoparticles could be dispersed at water as well as various medium. Water dispersible organic-inorganic (O-I) hybrid nanoparticles were first prepared using alkoxysilane-functionalized amphiphilic polymer precursors through a conventional sol-gel process. Hydrophobic antimicrobial compound, Eugenol encapsulated nanoparticles were prepared using these O-I hybrid nanoparticles through a new nanoprecipitation process. The effect of various preparation on the size of nanoparticles, amount of payload, antimicrobial activity, and release rate of encapsulated compounds was investigated. All eugenol-encapsulated O-I nanoparticles regardless of preparation condition showed the same minimal inhibitory concentration (MIC) (50mg/ml) and 99% of antimicrobial activity for every strain. Their antimicrobial activity could maintain longer than two weeks. Especially, eugenol-encapsulated O-I nanoparticles prepared using tetraethoxysilane (TEOS) exhibited the highest payload (50wt%) and the lowest release rate which was owing to higher inorganic content in the O-I nanoparticles. And these O-I nanoparticles dispersed in hexanediol (HD) showed the highest antimicrobial activity and solid content (70wt%) because HD acted as a solvent as well as a antimicrobial agent.

Physicochemical Characteristics of Agastache rugosa O. Kuntze Extracts by Extraction Conditions (추출조건에 따른 배초향 추출물들의 이화학적 특성)

  • Lee, Boo-Yong;Hwang, Jin-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Fifty-seven extracts from flower, leaf and stem of Agastache rugosa O. Kuntze were prepared by varing extraction conditions: solvents (hot water, ethanol and NaCl solution); temp.$(60,\;80\;and\;100^{\circ}C)$ and solvent ratios (10 to 35 times per material). Lipid content of leaf was 9.54% and protein content of the flower where the essential amino acids were most abundant among all parts was 16.8%. Among six minerals (Na. Ca, Fe, P, K and Mg) detected from all parts of the plant, the content of K was the highest. Extraction yield rated higher in odor of water, ethanol and NaCl solution, respectively and the extractions reached eqilibrium in about 15 to 20 min, regardless of extraction conditions. pH values of all extracted solvents maintained neutral upon extraction and a few free sugars in forms of glucose and fructose were detected from ethanol extracts. Colors and organoleptic characteristics of the extracts which determine the properties of final products varied with extraction conditions.

  • PDF

Effect of Enzymatic Deacetylation of T-2 Toxin on the Analysis of T-2 and HT-2 Toxins in Corn and Brown Rice (옥수수 및 현미에서 효소적 탈아세틸화가 T-2와 HT-2 독소 분석에 미치는 영향)

  • Lee, Su-Jin;Ha, Sang-Do;Chun, Hyang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.460-466
    • /
    • 2012
  • Through an analysis of T-2 and HT-2 toxins in corn and brown rice, the effect of enzymatic deacetylation of T-2 toxin on HT-2 toxin was investigated. Gas chromatography (GC) with electron capture detection and high-performance liquid chromatography (HPLC) with fluorescence detection were used for quantitative determination. T-2 toxin was converted into HT-2 (84-86%) within 15 min in the presence of crude protein extracts from corn and brown rice. The absence of T-2 conversion was observed for autoclaved samples, in which the enzymes were inactivated. When phosphate buffered saline, followed by methanol, was used as the extraction solvent, recoveries of T-2 toxin spiked at 50 and 200 ${\mu}g/kg$ were from 60 to 87%, whereas those of HT-2 in the autoclaved samples were 0%. In non-autoclaved samples, recoveries of HT-2 were 37-66%, whereas those of T-2 were negligible. However, the conversion of T-2 into HT-2 was not observed when samples were extracted by methanol/water.

Effect of Polymer Structure on Membrane Morphology by Addition of 2-butoxyethanol (2-butoxyethanol 첨가에 따른 고분자 구조가 분리막 구조에 미치는 영향)

  • Son, Ye-Ji;Kim, No-Won
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.377-388
    • /
    • 2011
  • Flat sheet microfiltration membranes were prepared with polysulfone (PSF), polyethersulfone (PES), and polyphenylsulfone (PPS) by an immersion precipitation phase inversion method. In this method, dimethyl formamide (DMF) and polyvinylpyrrolidone (PVP) were used as a solvent and a wetting polymer additive, respectively. 2-butoxyethanol (BE) was used as a nonsolvent additive catalyst to form pore. The morphology of membranes was investigated by scanning electron microscopy and micropermporometer. The permeability of the membranes was evaluated with the flux of pure water. When the BE was added, the pore size of membranes became larger than blank membranes. The changes in the morphology of membrane due to the BE addition depend on polymer structure. All membranes have similar mean pore size and porosity. The mean pore sizes of PSF, PES, and PPS membranes were 0.282, 0.330 $0.308{\mu}m$, respectively. The porosities of PSF, PES and PPS membranes were 68.5, 66.1, 66.4%, respectively. However, the PPS membrane showed higher pore density on surface and narrower pore size distribution than PSF or PES membrane does. As a result, the pure water flux of PPS membrane ($357L/m^2\;hr$) was higher than that of PSF ($196L/m^2\;hr$) or PES membrane ($214L/m^2\;hr$).

THE EFFECT OF ETHYLENE GLYCOL ANALOGS ON MECHANICAL PROPERTIES OF MOIST DEMINERALIZED DENTIN MATRIX (Ethylene Glycol 유사체가 탈회된 상아질의 물리적 성질에 미치는 영향)

  • Lee Kyung-Hee;Cho Young-Gon;Lee Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.4
    • /
    • pp.290-299
    • /
    • 2006
  • Objectives: The purpose of this study is to evaluate the effect of ethylene glycol analogs on modulus of elasticity and ultimate tensile strength of moist, demineralized dentin matrix. Methods: Dentin disks 0.5 mrn thick were prepared from mid-coronal dentin of extracted. unerupted, human third molars. 'I' beam and hour-glass shaped specimens were prepared from the disks, the ends protected with nail varnish and the central regions completely demineralized in 0.5M EDTA for 5 days. Ultimate tensile stress (UTS) and low strain modulus of elasticity (E) were determined with specimens immersed for 60 min in distilled water $(H_{2}O)$, ethylene glycol $(HO-CH_{2}-CH_{2}-OH)$, 2-methoxyethanol $(H_{3}CO-CH_{2}-CH_{2}-OH)$, and 1,2-dimethoxyethane $(H_{3}CO-CH_{2}-CH_{3}-OCH_{3})$ prior to testing in those same media. Modulus of elasticity was measured on the same specimens in a repeated measures experimental design. The results were analyzed with a one-way ANOVA on ranks, followed by Dunn's test at ${\alpha}\;=\;0.05$. Regression analysis examined the relationship between UTS or E and hoy's solubility parameter for hydrogen bonding $({\delta}_{h})$ of each solvent. Results: The UTS of demineralized dentin in water, ethylene glycol, 2-methoxyethanol, and 1,2-dimethoxyethane was 24 (3), 30 (5), 37 (6), and 45 (6) MPa, ${\times}$ (SD) N = 10. Low strain E for the same media were 16 (13), 23 (14), 52 (24), and 62 (22) MPa. Regression analysis of UTS vs ${\delta}_{h}$ revealed a significant $(p\;<\;0.0001,\;r\;=\;-0.99,\;R^{2}\;=\;0.98)$ inverse, exponential relationship. A similar inverse relationship was obtained between low strain E vs ${\delta}_{h}\;(p\;<\;0.0005,\;r\;=\;-0.93,\;R^{2}\;=\;0.86)$. Significance: The tensile properties of demineralized dentin are dependent upon the hydrogen bonding ability of polar solvents $({\delta}_{h})$. Solvents with low ${\delta}_{h}$ values may permit new interpeptide H-bonding in collagen that increases its tensile properties. Solvents with high ${\delta}_{h}$ values prevent the development of these new interpeptide H-bonds.

Antimicrobial Activity against Respiratory Bacteria by Asparagus Cochinchinensis Extracts and its Antioxidant Capacity (천문동 추출물의 호흡기 세균에 대한 항균활성 및 항산화)

  • Jung, Min-Gi;Kim, Su-In;Jeong, Hae-Jin;Lee, Chung-Yeol;Son, Hong-Joo;Hwang, Dae-Youn;Lee, Hee-sup;Kim, Dong-Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.367-372
    • /
    • 2015
  • This study was aimed at determining the antioxidant and antimicrobial effects of solvent extracts from Asparagus cochinchinensis. The Asparagus cochinchinensis was extracted with water, methanol, ethanol, n-hexane, dichloromethane, ethyl acetate, and ether. The antimicrobial activity of these extracts was determined by modified well diffusion methods against 4 species of respiratory disease bacteria (Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, and Pseudomonas aeruginosa). In addition, the amount of total polyphenol and flavonoid content, and antioxidant activity was evaluated. Ethyl acetate extract of A. cochinchinensis exhibited higher antimicrobial activity against tested microorganisms than water, methanol, ethanol, n-hexane, dichloromethane, and ether extracts. For antioxidant activity, the ethyl acetate extract of A. cochinchinensis exhibited a notable effect on the scavenging of superoxide against DPPH ($IC_{50}=3.81mg/ml$). Finally, the total polyphenol and flavonoid contents were $14{\pm}0.7mg/g$, and $0.50{\pm}0.13mg/g$, respectively. These results can be regarded as basic research into A. cochinchinensis for the prevention of respiratory diseases. The results indicate that A. cochinchinensis may be utilized as a nutraceutical for respiratory diseases when the physiologically active substances of A. cochinchinensis are increased by further study.

Analysis of in vitro 2D-COSY on Human Brain Metabolites for Molecular Stereochemistry

  • Kim, Sang-Young;Woo, Dong-Cheol;Bang, Eun-Jung;Kim, Sang-Soo;Lim, Hyang-Sook;Choi, Chi-Bong;Choe, Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.1
    • /
    • pp.14-25
    • /
    • 2008
  • To investigate the 3-bond connectivity of human brain metabolites by scalar coupling interaction through 2D-correlation spectroscopy (COSY) techniques using high field NMR spectroscopy. All NMR experiments were performed at 298K on Unity Inova 500 or 600 (Varian Inc.) equipped with a triple resonance probe head with z-shield gradient. Human brain metabolites were prepared with 10% $D_2O$. Two dimensional 2D COSY spectra were acquired with 4096 complex data points in $t_2$ and 128 or 256 increments in $t_1$ dimension. The spectral width was 9615.4 Hz and solvent suppression was achieved using presaturation using low power irradiation of the water resonance during 2s of relaxation delay. NMR data were processed using VNMRJ (Varian Instrument) software and all the chemical shifts were referenced to the methyl resonance of N-acetyl aspartate (NAA) peak at 2.0 ppm. Total 10 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), glutamine (Gln), glutamate (Glu), myo-inositol (Ins), lactate (Lac), taurine (Tau), ${\gamma}$-aminobutyricacid (GABA), alanine (Ala) were included for major target metabolites. Symmetrical 2D-COSY spectra were successfully acquired. Total 14 COSY cross peaks were observed even though there were parallel/orthogonal noisy peaks induced by water suppression. Except for Cr, all of human brain metabolites produced COSY cross peaks. The spectra of NAA methyl proton at 2.02 ppm and Glu methylene proton ($CH_2(3)$) at 2.11 ppm and Gln methylene proton ($CH_2(3)$) at 2.14 ppm were overlapped in the similar resonance frequency between 2.00 ppm and 2.15 ppm. The present study demonstrated that in vitro 2D-COSY represented the 3-bond connectivity of human brain metabolites by scalar coupling interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2D-COSY study. Also it would be helpful to determine the molecular stereochemistry in vivo by using two-dimensional MR spectroscopy.

Mechanical Property and Cell Compatibility of Silk/PLGA Hybrid Scaffold; In Vitro Study (실크/PLGA 하이브리드 지지체의 기계적 물성과 세포친화력; in vitro 연구)

  • Song, Yi-Seul;Yoo, Han-Na;Eum, Shin;Kim, On-You;Yoo, Suk-Chul;Kim, Hyung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.189-195
    • /
    • 2011
  • The design of new bioactive scaffolds offering physiologic environment for tissue formation is an important frontier in biomaterials research. In this study, we performed compressive strength, water-uptake ability, and SEM analysis for physical property assessment of 3-D silk/PLGA scaffold, and investigated the adhesion, proliferation, phenotype maintenance, and inflammatory responses of RAW 264.7 and NIH/3T3 for cell compatibility. Scaffolds were prepared by the solvent casting/salt leaching method and their compressive strength and water-uptake ability were excellent at 20 wt% silk content. Result of cell compatibility assay showed that inflammatory responses distinctly decreased, and initial adhesion and proliferation were maximized at 20 wt% silk content. In conclusion, we suggest that silk/PLGA scaffolds may be useful to tissue engineering applications.

Exposure Characteristics of Construction Painters to Organic Solvents

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-Kil
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Background: Construction painters have not been studied well in terms of their hazards exposure. The objective of this study was to evaluate the exposure levels of total volatile organic compounds (TVOCs) for painters in the construction industry. Methods: Activity-specific personal air samplings were carried out in three waterproofing activities [polyurethane (PU), asphalt, and cement mortar] and three painting activities (epoxy, oil based, and water based) by using organic-vapor-monitor passive-sampling devices. Gas chromatograph with flame ionization detector could be used for identifying and quantifying individual organic chemicals. The levels of TVOCs, by summing up 15 targeted substances, were expressed in exposure-index (EI) values. Results: As arithmetic means in the order of concentration levels, the EIs of TVOCs in waterproofing works were 10.77, 2.42, 1.78, 1.68, 0.47, 0.07, and none detected (ND) for indoor PU-primer task, outdoor PU-primer task, outdoor PU-resin task, indoor PU-resin task, asphalt-primer task, asphalt-adhesive task, and cement-mortar task, respectively. The highest EI for painting works was 5.61 for indoor epoxyprimer task, followed by indoor epoxy-resin task (2.03), outdoor oil-based-spray-paint task (1.65), outdoor water-based-paint task (0.66), and indoor oil-based-paint task (0.15). Assuming that the operations were carried out continuously for 8 hours without breaks and by using the arithmetic means of EIs for each of the 12 tasks in this study, 58.3% (7 out of 12) exceeded the exposure limit of 100% (EI > 1.0), while 8.3% (1 out of 12) was in 50e100% of exposure limit (0.5 > EI > 1.0), and 4 tasks out of 12 were located in less than 50% of the limit range (EI < 0.5). Conclusion: From this study, we recognized that construction painters are exposed to various solvents, including carcinogens and reproductive toxins, and the levels of TVOC concentration in many of the painting tasks exceeded the exposure limits. Construction workers need to be protected from chemical agents during their painting works by using personal protective devices and/or work practice measures. Additional studies should focus on the exposure assessment of other hazards for construction workers, in order to identify high-risk tasks and to improve hazardous work environments.

Screening of Edible Mushrooms for the Production of Lovastatin and its HMG-CoA Reductase Inhibitory Activity (Lovastatin을 생산하는 식용버섯 선발과 HMG-CoA reductase 저해 효과)

  • Lee Jae-Won;Lee Soo-Min;Gwak Ki-Seob;Lee Ji-Yoon;Choi In-Gyu
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • This research was performed to determine the production of lovastatin and its HMG-CoA reductase activity produced by fruit bodies and mycelial liquid cultures of domestic edible mushrooms (8 fungal strains). By deter-mining TLC analysis for the confirmation of the presence of lovastatin, all the extracts from fruit bodies and mycelial liquid culture showed same Rf value (0.46), whick was identical to that of the standard lovastatin. In order to extract lovastatin from fruit body, the mixture of water/acetonitrile/methanol was chosen as the most effective solvent. Extracts from fruit body and mycelial liquid culture of pleurotus ostreatus produced the high-est lovastatin 0.98 mg/g based on dry biomass, and 21.90 mg/L, respectively. In the inhibition rate of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the highest was obtained in P. ostreatus as 67.8% among fruit bodies, and the rates of mycelial liquid culture extracts from P. ostreatus and Laetiporus sulphureus were 37.2% and 29.1%, respectively. Unusually L. sulphureus showed high inhibition rate with low content of lovastatin due to the contribution of campesterol and gamma-sitosterol with hypocholesterolemic activity as metabolites.