• Title/Summary/Keyword: Water separator

Search Result 150, Processing Time 0.027 seconds

Full-scale Soil Washing and Non-discharged Washing Water Treatment Process of Soil Contaminated With Petroleum Hydrocarbon (현장규모의 유류오염 토양세척 및 무방류 세척 유출수 처리 공정)

  • Seo, Yong-Sik;Choi, Sang-Il;Kim, Jong-Min;Kim, Bo-Kyung;Kim, Sung-Gyoo;Park, Sang-Hean;Ju, Weon-Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • A non-discharged system of sequentially physico-chemical water treatment was used to treat the contaminated water produced from washing system of soils according to full-scale soil washing. After washing the TPH contaminated soils, the remaining concentrations of COD$_{Mn}$, SS, and n-hexane were analyzed for each compartment to estimate the treatment efficiencies of non-discharged system. Three times of sampling events were conducted for 4 different compartments (sediment tank, flocculation tank, oil/water separator, and process-water tank). In addition, soil washing efficiencies and concentrations of each parameter (COD$_{Mn}$, SS, and n-hexane) for process-water tank were analyzed for about 8 months. As results, the average efficiency of soil washing was high to have 95.9%, regardless of the condition of TPH contamination level for soils, as well as the concentrations of COD$_{Mn}$, SS, and n-hexane in the process-water tank were below the regulation limits of the Water Environmental Conserveation Act. Accordingly, the full-scale washing treatment system in this study could make the washing water 100% recycled which lead the system to be environmentally-friendly and economical.

An Experimental Study of Operating Characteristics on Fouling Auto Removal Apparatus of Multi Pass Type Heat Exchanger using Ejector (이젝터를 이용한 다관식 열교환기 파울링 자동제거장치의 구동특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.63-69
    • /
    • 2009
  • The experiment was performed to check operating characteristics of fouling auto removal apparatus for multi pass type heat exchanger using ejector. The results showed as following. The ejector suction flow rate increased with the head of operating pump of ejector. Proper suction flow rate showed $7.2{\sim}10.2m^3/h$ for ball collection in case of pump head 35~50m. The head of ejector outlet pipe is below 4.1m in case of 40m, the head of operating pump of ejector to confirm ejector suction flow rate 8.4m3/h. Lattice space of ball separator is allowed 6~10.3mm in ranges of ball diameter are 15~25mm and when mass flow of cooling water is 3.0m/sec. Average of passing time of balls is 1.2~2.8sec depend on the velocity of flow and the size of balls.

  • PDF

High speed deposition technique of YSZ film for the superconducting tape (고온초전도테이프 제작을 위한 YSZ 박막의 고속증착방법)

  • Kim Ho-Sup;Shi Dongqui;Chung Jun-Ki;Ko Rock-Kil;Ha Hong-Soo;Song Kyu-Jeong;Youm Do-Jun;Park Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.27-32
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of /< superconducting layer>//. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is CeO$_2$(cap layer)/YSZ(diffusion barrier layer)/CeO$_2$(seed layer). Evaporation technique is used for the CeO$_2$ layer and DC reactive sputtering technique is used for the YSZ layer, A chamber was set up specially for DC reactive sputtering, Detailed features are as following. A separator divided the chamber into two halves a sputtering chamber and a reaction chamber. The argon gas for sputtering target elements flows out of the cap of sputtering gun, and water vapor for reaction with depositing species spouts near the substrate. Turbo pump is connected with reaction chamber. High speed deposition of YSZ film could be achieved in the chamber. Detailed deposition conditions (temperature and partial pressure of reaction gas) were investigated for the rapid growth of high quality YSZ film.

Fish Jelly Forming Ability of Pretreated and Frozen Common Carp and Conger Eel (전처리하여 동결한 잉어 및 붕장어의 어묵원료적성)

  • YANG Syng-Taek;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 1985
  • Changes in fish jelly forming ability of pretreated and frozen common carp and conger eel were examined. Four kinds of pretreated samples were prepared such as round, mechanically separated meat using fishmeat separator, chopped and water washed meat and fish meat paste. The quality of pretreated samples and fish jelly products made from pretreated sample were generally in good condition for three months of frozen storage at $-30^{\circ}C$. Judging from fish jelly forming ability, the round state of common carp was superior to other pretreated samples during frozen storage. In case of conger eel, fish meat paste revealed totter jelly forming ability than any other pretreated samples during frozen storage.

  • PDF

Development of Moving Alternating Magnetic Filter Using Permanent Magnet for Removal of Radioactive Corrosion Product from Nuclear Power Plant

  • M. C. Song;Kim, S. I.;Lee, K. J.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.494-501
    • /
    • 2002
  • Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). How rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters.

Ethanol Steam Reforming Reaction for a Clean Hydrogen Production and its Application in a Membrane Reactor (청정수소생산을 위한 에탄올 수증기개질반응 및 막반응기에서의 응용)

  • Lim, Hankwon
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • Ethanol steam reforming reaction considered as a clean hydrogen production method is introduced in this paper. Reactivity and reaction rate equation of ethanol steam reforming reaction using various catalysts, reaction temperature, and molar ratio of ethanol and water will be discussed. In addition to introducing a membrane reactor combining a reactor and a separator, the effect of the use of a membrane reactor on an ethanol conversion and hydrogen yield will be compared to those from a conventional packed-bed reactor.

He-Polymer Microchip Plasma (PMP) System Incorporating a Gas Liquid Separator for the Determination of Chlorine Levels in a Sanitizer Liquid

  • Oh, Joo-Suck;Kim, Y.H.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.595-598
    • /
    • 2009
  • The authors describe an analytical method to determine total chlorine in a sanitizer liquid, incorporating a lab-made He-rf-plasma within a PDMS polymer microchip. Helium was used instead of Ar to produce a plasma to achieve efficient Cl excitation. A quartz tube 1 mm i.d. was embedded in the central channel of the polymer microchip to protect it from damage. Rotational temperature of the He-microchip plasma was in the range 1350-3600 K, as estimated from the spectrum of the OH radical. Chlorine was generated in a volatilization reaction vessel containing potassium permanganate in combination of sulfuric acid and then introduced into the polymer microchip plasma (PMP). Atomic emission lines of Cl at 438.2 nm and 837.7 nm were used for analysis; no emission was observed for Ar plasma. The achieved limit of detection was 0.81 ${\mu}g\;mL^{-1}$ (rf powers of 30-70 W), which was sensitive enough to analyze sanitizers that typically contained 100-200 ${\mu}g\;mL^{-1}$ of free chlorine in chlorinated water. This study demonstrates the usefulness of the devised PMP system in the food sciences and related industries.

Evaluation of Removal Efficiency of Water Contents using Inertial Impaction Separator (관성 충돌 방식의 액적 분리장치의 수분제거효율 평가)

  • Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • Inertial impaction type mist eliminators are the most effective instruments to separate mist from the gas. In this work, the effect of the horizontal chevron type mist eliminators is characterized experimentally. Droplet size distribution and evaluation of removal efficiency of the chevron type mist eliminators at different gas flows were investigated using an aerosol particle size analyzer and a portable aerosol spectrometer, respectively. The experimental investigations showed that the mist removal efficiency in these instruments is dependent in the droplet size, and the pressure drop is nil.

Effect of Microporous Structure of Al2O3/PVdF_HFP Ceramic Coating Layers on Thermal Stability and Electrochemical Performance of Composite Separators for Lithium-Ion Batteries (Al2O3/PVdF_HFP 세라믹코팅층의 미세기공구조가 리튬이차전지용 복합분리막의 열 안정성 및 전기화학특성에 미치는 영향)

  • Jeong, Hyun-Seok;Kim, Kyu-Chul;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.324-328
    • /
    • 2009
  • The internal short-circuit between cathodes and anodes has been known to be a critical concern for the safety failures of lithium-ion batteries, which is strongly influenced by the thermal stability of separators. In this study, to effectively suppress the internal short-circuit failures, we developed a new composite separator with the improved thermal stability compared to conventional polyolefin-based separators. The composite separators were prepared by introducing a ceramic coating layer ($Al_2O_3$/PVdF-HFP) onto both sides of a polyethylene (PE) separator. The microporous structure of ceramic coating layers is determined by controlling the phase inversion of coating solutions and becomes more developed with the increase of nonsolvent (water) content. This structural change of ceramic coating layers was observed to greatly affect the thermal stability as well as the electrochemical performance of composite separators, which was systematically discussed in terms of phase inversion.

Application Status and Prospect of Magnetic Separation Technology for Wastewater Treatment (폐수처리 분야에서 자기 분리기술의 응용 현황 및 전망)

  • Chu, Shaoxiong;Lim, Bongsu;Choi, Chansoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Magnetic separation technology is an efficient and environmentally friendly technology. Compared with the traditional wastewater treatment technology, the magnetic separation technology has its unique advantages and characteristics, and has been widely applied in the field of wastewater treatment. In particular, the emergence of superconducting magnetic separation technology makes possible for high application potential and value. In this paper, which through consulting with the literatures of Korea, Chinese, United States and other countries, the magnetic separation technology applied to wastewater treatment was mainly divided into direct application of magnetic field, flocculation, adsorption, catalysis and separation coupling technology. Advantages and limitations of the magnetic separation technology in sewage treatment and its future development were also studied. Currently, magnetic separation technology needs to be studied for additional improvement in processing mechanism, design optimization of magnetic carrier and magnetic separator, and overcoming engineering application lag. The selection, optimization and manufacturing of cheap magnetic beads, highly adsorbed and easily desorbed magnetic beads, specific magnetic beads, nanocomposite magnetic beads and the research of magnetic beads recovery technology will be hot application of the magnetic separation technology based on the magnetic carriers in wastewater treatment. In order to further reduce the investment and operation costs and to promote the application of engineering, it is necessary to strengthen the research and development of high field strength using inexpensive and energy-saving magnet materials, specifically through design and development of new high efficiency magnetic separators/filters, magnetic separators and superconducting magnetic separators.