• Title/Summary/Keyword: Water quenching

Search Result 213, Processing Time 0.024 seconds

Thermoelectric characteristics depend on compositions of $Bi_2Te_3$ in mixed alloy with PbTe

  • Jung, Kyoo-Ho;Yim, Ju-Hyuk;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.11-11
    • /
    • 2010
  • In order to design for nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system were investigated for their micro structure and thermal properties. For this synthesis the liquid alloys were cooled by water quenching method. The micro structure images were taken by using electron probe micro analyzer (EPMA). Dendritic and lamellar structures were clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. It was confirmed that a metastable compounds is $PbBi_2Te_4$ in the The $Bi_2Te_3$-PbTe system. The change in the composition increasing $Bi_2Te_3$ ratio causes to change structure from dendritic to lamellar. Seebeck coefficient of alloys 5 which the mixture rate of $Bi_2Te_3$ is 83% was measured as the highest value. In contrast, the others decreased by increasing $Bi_2Te_3$. n-type characteristics was observed at all condition except alloy 6 which $Bi_2Te_3$ ration is 91%. The power factors of all samples were calculated with Seebeck coefficient and resistivity. Also the thermal conductivity was measured by using laser flash analyzer (LFA). In this work, the microstructures and thermal properties have been measured as a function of ratio of $Bi_2Te_3$ in the $Bi_2Te_3$-PbTe system.

  • PDF

Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst

  • Zhang, Wanzhong;Yu, Caihong;Sun, Zhiming;Zheng, Shuilin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.957-967
    • /
    • 2018
  • A novel $g-C_3N_4$/ZnO/stellerite (CNZOS) hybrid photocatalyst, which was synthesized by coupled hydro thermal-thermal polymerization processing, was applied as an efficient visible-light-driven photocatalyst against Staphylococcus aureus. The optimum synthesized hybrid photocatalyst showed a sandwich structure morphology with layered $g-C_3N_4$ (doping amount: 40 wt%) deposited onto micron-sized ZnO/stellerite particles (ZnO average diameter: ~18 nm). It had a narrowing band gap (2.48 eV) and enlarged specific surface area ($23.05m^2/g$). The semiconductor heterojunction effect from ZnO to $g-C_3N_4$ leads to intensive absorption of the visible region and rapid separation of the photogenerated electron-hole pairs. In this study, CNZOS showed better photocatalytic disinfection efficiency than $g-C_3N_4/ZnO$ powders. The disinfection mechanism was systematically investigated by scavenger-quenching methods, indicating the important role of $H_2O_2$ in both systems. Furthermore, $h^+$ was demonstrated as another important radical in oxidative inactivation of the CNZOS system. In respect of the great disinfection efficiency and practicability, the CNZOS heterojunction photocatalyst may offer many disinfection applications.

Spectroscopic Properties of Quercetin-3-O-rhamnoside and Quercetin-3-O-rutinoside in Aerosol-OT Reverse Micelles

  • Park, Hyoung-Ryun;Liu, Hai-Bo;Shin, Sung-Chul;Park, Jong-Keun;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.981-987
    • /
    • 2011
  • The anomalous spectroscopic properties of quercetin-3-O-rhamnoside (QCRM) and quercetin-3-O-rutinoside (QCRT) in AOT reverse micelle were studied. The excited state intramolecular proton transfer (ESIPT) occurs through the strong hydrogen bond between the -OH at position 5 and the carbonyl oxygen. Because the ESIPT can only happens in the $S_1$ state and the Franck-Condon factor involved in the $S_2\;{\rightarrow}\;S_1$ internal conversion is small, the $S_2\;{\rightarrow}\;S_o$ emission alone appears. Because the molecular planarity is improved at the interior of the micelle, the excited state intramolecular charge transfer in the $S_1$ state is extended, and the excited state is more tolerable for any quenching effects in the micelle. Therefore, an $S_1\;{\rightarrow}\;S_o$ emission was newly discovered under this micelle microenvironment. For the $S_2\;{\rightarrow}\;S_o$ emission, the quantum yields increase but the quantum yield of the $S_1\;{\rightarrow}\;S_o$ emission approximately decreases as the water concentration in the micelle increases.

Properties of Reformed Electric Arc Furnace Slag as Cement Admixtures (용융개질 전기로슬래그의 시멘트 혼화재로서 특성)

  • Kim, Kee-seok;Bae, In-kook;Seo, Joo-beom;Choi, Jae-Seok;Lee, Yoon-kyu;Kim, Hyung-seok
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Ground granulated blast-furnace slag (GGBFS) which is by-product of steel industry has been recycled as a cement admixture though the other steel slags are used as aggregates. In this study, the electric arc furnace slag (EAFS) was used as a cement admixture after the reduction of iron oxide in the slag at the interface of molten slag and water quenching. Consequently, the reformed EAFS (REAFS) had higher grindability than that of granulated blast furnace slag. And in mortar tests, the strength properties of specimens using REAFS were 98% of plain specimens of GGBFS upto 20% replacement ratio of GGBFS with REAFS.

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

  • Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis

  • Liu, Fei;Ha, Hyun Dong;Han, Dong Ju;Park, Min Su;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.2-281.2
    • /
    • 2013
  • Since heavy metal ions included in water or food resources have critical effects on human health, highly sensitive, rapid and selective analysis for heavy metal detection has been extensively explored by means of electrochemical, optical and colorimetric methods. For example, quantum dots (QDs), such as semiconductor QDs, have received enormous attention due to extraordinary optical properties including high fluorescence intensity and its narrow emission peaks, and have been utilized for heavy metal ion detection. However, the semiconductor QDs have a drawback of serious toxicity derived from cadmium, lead and other lethal elements, thereby limiting its application in the environmental screening system. On the other hand, Graphene oxide (GO) has proven its superlative properties of biocompatibility, unique photoluminescence (PL), good quenching efficiency and facile surface modification. Recently, the size of GO was controlled to a few nanometers, enhancing its optical properties to be applied for biological or chemical sensors. Interestingly, the presence of various oxygenous functional groups of GO contributes to opening the band gap of graphene, resulting in a unique PL emission pattern, and the control of the sp2 domain in the sp3 matrix of GO can tune the PL intensity as well as the PL emission wavelength. Herein, we reported a photoluminescent GO array on which heavy metal ion-specific DNA aptamers were immobilized, and sensitive and multiplex heavy metal ion detection was performed utilizing fluorescence resonance energy transfer (FRET) between the photoluminescent monolayered GO and the captured metal ion.

  • PDF

A study on the diffusion bonding of the $Al_2$O$_3$ ceramics to metal (A$_2$O$_3$세라믹과 Ni-Cr-Mo鋼과의 인서트 合金을 이용한 擴散接合에 關한 硏究)

  • 김영식;박훈종;김정일
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 1992
  • The joining methods of ceramics to metals which can be expected to obtain high temperature strength are mainly classified into the solid-state diffusion bonding method and the active brazing method. Between these two, the solid-state diffusion bonding method is given attentions as substituting method for active brazing method due to being capable of obtaining higher bonding strength at high temperature and accurate bonding. In this paper, the solid-state diffusion bonding of $Al_{2}$O$_{3}$ ceramics to Ni-Cr-Mo alloy steel (SNCM21) using insert metal was carried out. The insert metal employed in this study was experimentally home-made, Ag-Cu-Ti alloy. Influence of several bonding parameters of $Al_{2}$O$_{3}$SNCM21 joint was quantitatively evaluated by bonding strength test, and microstructural analyses at the interlayer were performed by SEM/EDX. From above experiments, the optimum bonding condition of the solid-state diffusion bonding of $Al_{2}$O$_{3}$/SNCM21 using Ag-Cu-Ti insert metal was determined. Futhermore, high temperature strength and thermal-shock properties of $Al_{2}$O$_{3}$/SNCM21 joint were also examined. The results obtained are as follows. 1. The maximum bonding strength was obtained at the temperature of 95% melting point of insert metal. 2. The high temperature strength of $Al_{2}$O$_{3}$/SNCM21 joint appeared to bemaximum value at test temperature 500.deg.C and the bonding strength with increasingtemperature showed parabolic curve. 3. The strength of thermal-shocked specimens was far deteriorated than those of as-bonded specimens. Especially, water-quenched specimen after heated up to 600.deg. C was directly fractured in quenching.

  • PDF

Austenite Stability of Nanocrystalline FeMnNiC Alloy (나노결정 FeMnNiC합금의 오스테나이트 안정성)

  • Oh, Seung-Jin;Jeon, Junhyub;Shon, In-Jin;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.389-394
    • /
    • 2019
  • In the present study, we have investigated the effect of sintering process conditions on the stability of the austenite phase in the nanocrystalline Fe-5wt.%Mn-0.2wt.%C alloy. The stability and volume fraction of the austenite phase are the key factors that determine the mechanical properties of FeMnC alloys, because strain-induced austenite-martensite transformation occurs under the application of an external stress at room temperature. Nanocrystalline Fe-5wt.%Mn-0.2wt.%C samples are fabricated using the spark plasma sintering method. The stability of the austenite phase in the sintered samples is evaluated by X-ray diffraction analysis and hardness test. The volume fraction of austenite at room temperature increases as the sample is held for 10 min at the sintering temperature, because of carbon diffusion in austenite. Moreover, water quenching effectively prevents the formation of cementite during cooling, resulting in a higher volume fraction of austenite. Furthermore, it is found that the hardness is influenced by both the austenite carbon content and volume fraction.

Dependence of Hardness Change on Microstructure during Isothermal Aging in Mg-Al Alloy (Mg-Al 합금에서 등온 시효 중 경도 변화의 미세조직 의존성)

  • Han, Jin-Gu;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.249-255
    • /
    • 2019
  • This study is intended to clarify the main microstructural factors that contribute to an increase of hardness during isothermal aging in Mg-Al alloy. For this work, Mg-9.3%Al alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 473 K for up to 24 h. The aging at 473 K yielded nodular discontinuous precipitates (DPs) with (${\alpha}+{\beta}$) lamellar morphology at the grain boundaries, and the volume fraction of DPs increased from 0% to ~30% with increasing aging time up to 12 h. For the aging times longer than 12 h, further formation of DPs was substantially inhibited owing to the occurrence of significant continuous precipitation within the ${\alpha}-(Mg)$ matrix, and the density of continuous precipitates (CPs) becomes greater with increasing aging time. Hardness of the specimen was steadily increased with aging time up to 24 h. Microstructural examination on the aged specimens revealed that the increased overall hardness at the early stage of aging is associated with the increased volume fraction of DPs, but at the later stage of aging, where the amount of DPs was hardly changed, the increased hardness of the ${\alpha}-(Mg)$ matrix in response to the higher density of CPs within the matrix, plays a key role in increasing the overall hardness value.