DOI QR코드

DOI QR Code

Dependence of Hardness Change on Microstructure during Isothermal Aging in Mg-Al Alloy

Mg-Al 합금에서 등온 시효 중 경도 변화의 미세조직 의존성

  • Han, Jin-Gu (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Jun, Joong-Hwan (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
  • 한진구 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재그룹) ;
  • 전중환 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재그룹)
  • Received : 2019.10.14
  • Accepted : 2019.11.01
  • Published : 2019.11.30

Abstract

This study is intended to clarify the main microstructural factors that contribute to an increase of hardness during isothermal aging in Mg-Al alloy. For this work, Mg-9.3%Al alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 473 K for up to 24 h. The aging at 473 K yielded nodular discontinuous precipitates (DPs) with (${\alpha}+{\beta}$) lamellar morphology at the grain boundaries, and the volume fraction of DPs increased from 0% to ~30% with increasing aging time up to 12 h. For the aging times longer than 12 h, further formation of DPs was substantially inhibited owing to the occurrence of significant continuous precipitation within the ${\alpha}-(Mg)$ matrix, and the density of continuous precipitates (CPs) becomes greater with increasing aging time. Hardness of the specimen was steadily increased with aging time up to 24 h. Microstructural examination on the aged specimens revealed that the increased overall hardness at the early stage of aging is associated with the increased volume fraction of DPs, but at the later stage of aging, where the amount of DPs was hardly changed, the increased hardness of the ${\alpha}-(Mg)$ matrix in response to the higher density of CPs within the matrix, plays a key role in increasing the overall hardness value.

Keywords

References

  1. B. L. Mordike and T. Ebert : Mater. Sci. Eng. A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave and G. L. Dunlop : Mater. Trans. 47 (2006) 977. https://doi.org/10.2320/matertrans.47.977
  3. C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton : Mater. Sci. Eng. A 325 (2002) 344. https://doi.org/10.1016/S0921-5093(01)01467-8
  4. R. K. Singh Raman, N. Birbilis and J. Efthimiadis : Corro. Eng. Sci. Tech. 39 (2004) 346. https://doi.org/10.1179/174327804X13208
  5. H. Cao and M. Wessen : Metall. Mater. Trans. A 35A (2004) 309.
  6. A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer and D. H. StJohn : J. Light Met. 1 (2001) 61. https://doi.org/10.1016/S1471-5317(00)00007-9
  7. G. L. Song, A. L. Bowles and D. H. StJohn : Mater. Sci. Eng. A 366 (2004) 74. https://doi.org/10.1016/j.msea.2003.08.060
  8. H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao and A. Tang : J. Mater. Sci. 49 (2014) 3107. https://doi.org/10.1007/s10853-013-8012-3
  9. M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647. https://doi.org/10.1016/S1359-6462(02)00555-9
  10. K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  11. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani and S. Ikeno : Mater. Trans. 52 (2011) 340. https://doi.org/10.2320/matertrans.MB201021
  12. S. Takeshita, C. Watanabe, R. Monzen and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470. https://doi.org/10.2464/jilm.64.470
  13. S. Celotto : Acta Mater. 48 (2000) 1775. https://doi.org/10.1016/S1359-6454(00)00004-5
  14. D. Duly, Y. Brechet and B. Chenal : Acta Metall. Mater. 40 (1992) 2289. https://doi.org/10.1016/0956-7151(92)90147-7
  15. D. Bradai, M. Kadi-Hanifi, P. Zieba, W. M. Kuschke and W. West : J. Mater. Sci. 34 (1999) 5331. https://doi.org/10.1023/A:1004753122411
  16. J. H. Jun : J. Alloys Compd. 75 (2017) 237. https://doi.org/10.1016/j.jallcom.2017.07.147
  17. N. Ridley : Metall. Trans. A 15A (1984) 1019. https://doi.org/10.1007/BF02644694
  18. C. Zener : Trans. AIME 167 (1946) 550.