DOI QR코드

DOI QR Code

Austenite Stability of Nanocrystalline FeMnNiC Alloy

나노결정 FeMnNiC합금의 오스테나이트 안정성

  • Oh, Seung-Jin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 오승진 (전북대학교 신소재공학부) ;
  • 전준협 (전북대학교 신소재공학부) ;
  • 손인진 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Received : 2019.10.02
  • Accepted : 2019.10.18
  • Published : 2019.10.28

Abstract

In the present study, we have investigated the effect of sintering process conditions on the stability of the austenite phase in the nanocrystalline Fe-5wt.%Mn-0.2wt.%C alloy. The stability and volume fraction of the austenite phase are the key factors that determine the mechanical properties of FeMnC alloys, because strain-induced austenite-martensite transformation occurs under the application of an external stress at room temperature. Nanocrystalline Fe-5wt.%Mn-0.2wt.%C samples are fabricated using the spark plasma sintering method. The stability of the austenite phase in the sintered samples is evaluated by X-ray diffraction analysis and hardness test. The volume fraction of austenite at room temperature increases as the sample is held for 10 min at the sintering temperature, because of carbon diffusion in austenite. Moreover, water quenching effectively prevents the formation of cementite during cooling, resulting in a higher volume fraction of austenite. Furthermore, it is found that the hardness is influenced by both the austenite carbon content and volume fraction.

Keywords

References

  1. R. L. Miller: Metall. Mater. Trans. B, 3 (1972) 905. https://doi.org/10.1007/BF02647665
  2. S. Lee, S.-J. Lee, S. S. Kumar, K. Lee and B. C. De Cooman: Metall. Mater. Trans. A, 42 (2011) 3638. https://doi.org/10.1007/s11661-011-0636-9
  3. J. M. Torralba, A. Navarro and M. Campos: Mater. Sci. Eng., A, 573 (2013) 253. https://doi.org/10.1016/j.msea.2013.02.034
  4. G. Frommeyer, U. Brux and P. Neumann: ISIJ Int., 43 (2003) 438. https://doi.org/10.2355/isijinternational.43.438
  5. S.-J. Lee, S. Lee and B. C. De Cooman: Scr. Mater., 64 (2011) 649. https://doi.org/10.1016/j.scriptamat.2010.12.012
  6. K. Kim and S.-J. Lee: Mater. Sci. Eng., A, 698 (2017) 183. https://doi.org/10.1016/j.msea.2017.05.030
  7. S.-J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423. https://doi.org/10.3139/146.110882
  8. S.-J. Oh, D. Park, K. Kim, I.-J. Shon and S.-J. Lee: Mater. Sci. Eng., A, 725 (2018) 382. https://doi.org/10.1016/j.msea.2018.04.051
  9. S.-J. Oh, I.-J. Shon and S.-J. Lee: J. Korean Powder Metall. Inst., 25 (2018) 126. https://doi.org/10.4150/KPMI.2018.25.2.126
  10. C. Kuhrt and L. Schultz: J. Appl. Phys., 73 (1993) 1975. https://doi.org/10.1063/1.353162
  11. G. K. Williamson and W. H. Hall: Acta Metall., 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6
  12. I. Mobasherpour, A. A. Tofigh and M. Ebrahimi: Mater. Chem. Phys., 138 (2013) 535. https://doi.org/10.1016/j.matchemphys.2012.12.015
  13. B. L. Averbach and M. Cohen: Trans. AIME., 176 (1948) 401.
  14. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun and H. Dong: Acta Mater., 59 (2011) 4002. https://doi.org/10.1016/j.actamat.2011.03.025
  15. I. Seki and K. Nagata: ISIJ Int., 45 (2005) 1789. https://doi.org/10.2355/isijinternational.45.1789
  16. F. Martin, C. Garcia, Y. Blanco and M. L. Rodriguez-Mendez: Mater. Sci. Eng., A, 642 (2015) 360. https://doi.org/10.1016/j.msea.2015.06.097