Browse > Article
http://dx.doi.org/10.12656/jksht.2019.32.6.249

Dependence of Hardness Change on Microstructure during Isothermal Aging in Mg-Al Alloy  

Han, Jin-Gu (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
Jun, Joong-Hwan (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.32, no.6, 2019 , pp. 249-255 More about this Journal
Abstract
This study is intended to clarify the main microstructural factors that contribute to an increase of hardness during isothermal aging in Mg-Al alloy. For this work, Mg-9.3%Al alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 473 K for up to 24 h. The aging at 473 K yielded nodular discontinuous precipitates (DPs) with (${\alpha}+{\beta}$) lamellar morphology at the grain boundaries, and the volume fraction of DPs increased from 0% to ~30% with increasing aging time up to 12 h. For the aging times longer than 12 h, further formation of DPs was substantially inhibited owing to the occurrence of significant continuous precipitation within the ${\alpha}-(Mg)$ matrix, and the density of continuous precipitates (CPs) becomes greater with increasing aging time. Hardness of the specimen was steadily increased with aging time up to 24 h. Microstructural examination on the aged specimens revealed that the increased overall hardness at the early stage of aging is associated with the increased volume fraction of DPs, but at the later stage of aging, where the amount of DPs was hardly changed, the increased hardness of the ${\alpha}-(Mg)$ matrix in response to the higher density of CPs within the matrix, plays a key role in increasing the overall hardness value.
Keywords
Mg-Al alloy; Aging treatment; Discontinuous precipitates; Continuous precipitates; Hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. L. Mordike and T. Ebert : Mater. Sci. Eng. A 302 (2001) 37.   DOI
2 M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave and G. L. Dunlop : Mater. Trans. 47 (2006) 977.   DOI
3 C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton : Mater. Sci. Eng. A 325 (2002) 344.   DOI
4 R. K. Singh Raman, N. Birbilis and J. Efthimiadis : Corro. Eng. Sci. Tech. 39 (2004) 346.   DOI
5 H. Cao and M. Wessen : Metall. Mater. Trans. A 35A (2004) 309.
6 A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer and D. H. StJohn : J. Light Met. 1 (2001) 61.   DOI
7 G. L. Song, A. L. Bowles and D. H. StJohn : Mater. Sci. Eng. A 366 (2004) 74.   DOI
8 H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao and A. Tang : J. Mater. Sci. 49 (2014) 3107.   DOI
9 M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647.   DOI
10 K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870.   DOI
11 K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani and S. Ikeno : Mater. Trans. 52 (2011) 340.   DOI
12 S. Takeshita, C. Watanabe, R. Monzen and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470.   DOI
13 S. Celotto : Acta Mater. 48 (2000) 1775.   DOI
14 D. Duly, Y. Brechet and B. Chenal : Acta Metall. Mater. 40 (1992) 2289.   DOI
15 D. Bradai, M. Kadi-Hanifi, P. Zieba, W. M. Kuschke and W. West : J. Mater. Sci. 34 (1999) 5331.   DOI
16 J. H. Jun : J. Alloys Compd. 75 (2017) 237.   DOI
17 N. Ridley : Metall. Trans. A 15A (1984) 1019.   DOI
18 C. Zener : Trans. AIME 167 (1946) 550.