• Title/Summary/Keyword: Water quality distribution

Search Result 904, Processing Time 0.025 seconds

A study on estimating background concentration of groundwater for water quality assessment in non-water supply district (상수도 미보급 지역의 지하수 수질상태 평가를 위한 배경농도 산정방법에 관한 연구)

  • Yea, Young-Do;Seo, Yong-Gyo;Kim, Rak-Hyeon;Cho, Dong-Jun;Kim, Kwang-Shik;Cho, Wook-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.345-358
    • /
    • 2014
  • For introducing the groundwater quality assessment using background concentration of groundwater, several methods had been studied to estimate the background concentration of groundwater and to suggest the background concentration of study area. Some methods such as Box whisker plot, Percentile and Cumulative probability distribution had been adopted to estimate background concentration, and it was evaluated that the Cumulative probability distribution method presents more reasonable background concentration because it can consider the data distribution. So we estimated the background concentration of study area using cumulative probability distribution method. We suggested the background concentration for each hydrogeology respectively in case hydrogeological water quality similarity is very low.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

Estimation of water quality distribution in freshing reservoir by satellite images

  • Torii, Kiyoshi;You, Jenn-Ming;Chiba, Satoshi;Cheng, Ke-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1227-1229
    • /
    • 2003
  • Kojima Lake in Okayama prefecture is a freshing reservoir constructed adjacent to the oldest reclaimed land in Japan. This lake has a serious water quality problem because two urban rivers are flowing into it. In the present study, unsupervised classification was performed at intervals of several years using Landsat MSS data in the past 15 years. After geometric correction of these data, MSS data corresponding geographically to the field observation data were extracted and subjected to the multivariate analysis. Water quality distribution in the lake was estimated using the regression equation obtained as a result. In addition, two - dimensional and three-dimensional numerical simulations were performed and compared with the distribution obtained from the satellite images. Behavior of the reservoir flows is complicated and water quality distribution varies greatly with the flows. Here, I report the results of analysis on three factors, field observation, numerical simulation and satellite images.

  • PDF

Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents (수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구)

  • KIM, JAE-KON;JEON, CHEOl-HWAN;MIN, KYONG-IL;KIM, SHIN;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

Distribution of Air-Water Two-Phase Flow in a Header of Aluminum Flat Tube Evaporator (알루미늄 평판관 증발기 헤더 내 공기-물 2상류 분지 실험)

  • Kim Nae-Hyun;Shin Tae-Ryong;Sim Yong-Sup
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a round header - flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is thirty. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.

Development of a Dynamic Model for Water Quality Simulation during Unsteady Flow in Water Distribution Networks (부정류 흐름에서 상수관망 수질해석을 위한 동역학적 모형의 개발)

  • Choi, Doo-Yong;Cho, Won-cheol;Kim, Do-Hwan;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.609-617
    • /
    • 2012
  • A dynamic water quality model is presented in order to simulate water quality under slowly varying flow conditions over time. To improve numerical accuracy, the proposed model uses a lumped system approach instead of extended period simulation, unlike the other available models. This approach can achieve computational efficiency by assuming liquid and pipe walls to be rigid, unlike the method of characteristics, which has been successfully implemented in rapidly varying flows. The discrete volume method is applied to resolve the advection and reaction terms of the transport equation for water quality constituents in pipes. Numerical applications are implemented to the pipe network examples under steady and unsteady conditions as well as hydraulic and water quality simulations. The numerical results are compared with EPANET2, which is a widely used simulation model for a water distribution system. The model results are in good agreement with EPANET2 for steady-state simulation. However, the hydraulic simulation results under unsteady flows differ from those of EPANET2, which causes a deviation in water quality prediction. The proposed model is expected to be a component of an integrated operation model for a water distribution system if it is combined with a computational model for rapidly varying flows to estimate leakage, pipe roughness, and intensive water quality.

Effect of Improving Quality by Changing the Distribution Method of Shrimp Culture

  • KWON, Woo-Taeg;JUNG, Min-Jae;Woo, Hyun-Jin;LEE, Woo-Sik;KWON, Lee-Seung
    • Journal of Distribution Science
    • /
    • v.19 no.4
    • /
    • pp.53-60
    • /
    • 2021
  • Purpose: This study focuses on exploring ways to improve the distribution method of shrimp farming so that it is eco-friendly and increases the distribution of shrimp. Research design, data and methodology: The experimental device installed in a biofloc shrimp culture in one area tested 10 times. Complex odor, concentration of H2S, water quality improvement effected by decomposition of organic substances, and degree of microbial activation measured. The data of the experimental results verified using the T-test technique, and the p value was determined based on the significance probability of 0.05. Results: This experimental device was effective in reducing odor and hydrogen sulfide in shrimp farms. With the improvement of water quality, dissolved oxygen increased due to the microbubble and cavitation action of air ejector and ultrasonic waves. In addition, the cultured microorganisms in the cultured water treated by the experimental device were remarkably proliferated compared to the raw water. Conclusions: The biofloc distribution method has a significant effect on improving water quality and reducing odor substances and will become a new eco-friendly and efficient distribution method for shrimp farming in the future.

The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America (상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok;Loretta, Y. Li
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.

The assessment of self cleaning velocity and optimal flushing velocity in water distribution system (상수관망의 자가세척 유속과 적정 플러싱 유속 평가)

  • Bae, Cheol-Ho;Choi, Doo Yong;Kim, Ju-Hwan;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.441-451
    • /
    • 2014
  • The flushing is important to maintain good water quality in water main. It is a technique of using water velocity to remove sediments in water distribution system. The variety of water quality problems can occur in a distribution system, so too can a variety of benefits be gained by system flushing. In order to effectively perform the flushing, the contaminants to be removed to set up and it can be solved, it is necessary to ensure the proper flow rate. In this study, the removal of contaminants present in the inner water pipe attached loose deposits such as fine particles of granular activated carbon, sand and iron corrosion product sought to derive flow rates. Thus, the constant observation of using pilot plant scale water distribution plant for the movement of floating characteristics of particles were assessed.