• Title/Summary/Keyword: Water quality data

Search Result 2,414, Processing Time 0.03 seconds

Temporal and Spatial Analysis of Water Quality Data Observed from Major Water Quality Stations in Nakdonggang Watershed (낙동강 유역 주요 수질측정지점의 시·공간적 수질특성 분석)

  • Kim, So Rae;Kyung, Jo Hyun;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.545-545
    • /
    • 2017
  • The purpose of this study was to analyze the characteristics of water quality and spatial and temporal water quality in Nakdong River basin. Spatial changes of water quality in Nakdong River due to inflow of sewage treatment plant and main tributaries were analyzed. The water quality data were collected from the water environment information system of the National Institute of Environmental Research (NIED) for 8 days interval from 2004 to 2015, and the collected data were analyzed for water quality items (flow rate, BOD, TN, TP). The discharge water quality data of 32 sewage treatment plants were collected from the National Institute of Environmental Research (NIER) nationwide from 2012 to 2015 and arithmetically averaged over the spring and autumn seasons.

  • PDF

Behavior of Water Quality in Freshwater Lake of Tide Reclaimed Area Using SWMM and WASP5 Models (SWMM과 WASP5모형을 이용한 간척지 담수호의 수질거동 특성 조사)

  • 김선주;김성준;이석호;이준우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2002
  • Lake water quality assessment information is useful to anyone involved in lake management, from lakeshore owners to lake associations. 11 provides lake water quality, which can improve how to manage lake resources and how to measure current conditions. It also provides a knowledge base that can be used to protect and restore lakes. SWMM was applied to simulate the discharge and pollutant loads from Boryeong watershed, and WASP5 was applied to analyze the changes of water quality in Boryeong freshwater lake. In each model, the most suitable parameters were calculated through sensitive analysis and some parameters used default data. Simulated in SWMM and measured discharge showed the accuracy of 88.6%. T-N and T-P exceeds the criteria in the simulation of water quality in Boryeong freshwater lake, and control of pollutant loads in the main stream showed the most effective way. Integrated water quality management system was developed to give convenience in the operation of SWMM and WASP5 and data acquisition.

Evaluation of Water Quality Using Multivariate Statistic Analysis with Optimal Scaling

  • Kim, Sang-Soo;Jin, Hyun-Guk;Park, Jong-Soo;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.349-357
    • /
    • 2005
  • Principal component analysis(PCA) was carried out to evaluate the water quality with the monitering data collected from 1997 to 2003 along the coastal area of Ulsan, Korea. To enhance evaluation and to complement descriptive power of traditional PCA, optimal scaling was applied to transform the original data into optimally scaled data. Cluster analysis was also applied to classify the monitering stations according to their characteristics of water quality.

  • PDF

Quality Control to Improve Reliability of Automatic Water Quality Data (수질자동측정망 자료의 신뢰성 제고를 위한 정도관리)

  • Lim, Byung-Jin;Hong, Eun-Young;Kim, Hyun-Ook
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.338-344
    • /
    • 2010
  • The automatic water quality monitoring system (AWQMS) have been installed to immediately response to any pollution incident. It also make it possible to conduct the task efficiently regarding water quality control. The purpose of this study is to enhance reliability by securing accuracy of automatic water quality data through quality assessment (QA) for temperature, pH, dissolved oxygen (DO), electric conductivity (EC), total organic carbon (TOC). The result of comparison between manual and automatic data, relative accuracy of general items (temperature, pH, EC, DO) and TOC were mostly satisfied with guideline (i.e. less than 20%). On the other hand, relative accuracy of DO between sampling site and housing site was somewhat against the guideline. The contamination by attaching algae and microorganism in the pipeline is considered as main cause. After backwashing the pipeline, DO concentration was increased up to 53%. Therefore, pipeline management is recognizable as important thing to secure reliability of water quality data.

Statistical Analysis of Water Quality in the Downstream of the Han River (한강하류부 수질의 통계학적 해석)

  • 백경원;정용태;한건연;송재우
    • Water for future
    • /
    • v.29 no.2
    • /
    • pp.179-190
    • /
    • 1996
  • The characteristics of water quality in the downstream of the Han River were analyzed by statistical techniques. Basic characteristics, areal and temporal variations, and correlations of water quality data were investigated. Monthly water quality data have been investigated systematically by exploring data analysis, including time series plot, summary statistics, distribution test, time dependence test, seasonality test and flow relatedness test. Results show that water quality data in this river have seasonality. And applicability of stochastic models such as Thomas-Fiering model and ARMA(1,1) model was identified. From the examination of water quality data related to discharge, it was found that DO and SS are sensitive to water temperature rather than discharge, while BOD and COD are sensitive to discharge at dry seasons. Seasonal periodicities were identified in all water quality variables from the cross correlation analysis.

  • PDF

A Study for Estimation of Chlorophyll-a in an Ungauged Stream by the SWMM and an Artificial Neural Network (SWMM과 인공신경망을 이용한 미 계측 하천의 클로로필a 추정에 관한 연구)

  • Kang, Taeuk;Lee, Sangho;Kim, Ilkyu;Lee, Namju
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.670-679
    • /
    • 2011
  • Chlorophyll-a is a major water quality indicator for an algal bloom in streams and lakes. The purpose of the study is to estimate chlorophyll-a concentration in tributaries of the Seonakdonggang by an artificial neural network (ANN). As the tributaries are ungauged streams, a watershed runoff and quality model was used to simulate water quality parameters. The tributary watersheds include urban area and thus Storm Water Management Model (SWMM) was used to simulate TN, TP, BOD, COD, and SS. SWMM, however, can not simulate chlorophyll-a. The chlorophyll-a series data from the tributaries were estimated by the ANN and the simulation results of water quality parameters using SWMM. An assumption used is as follows: the relation between water quality parameters and chlorophyll-a in the tributaries of the Seonakdonggang would be similar to that in the mainstream of the Seonakdonggang. On the assumption, the measurement data of water quality and chlorophyll-a in the mainstream of the Seonakdonggang were used as the learning data of the ANN. Through the sensitivity analysis, the learning data combination of water quality parameters was determined. Finally, chlorophyll-a series were estimated for tributaries of the Seonakdonggang by the ANN and TN, TP, BOD, COD, and temperature data from those streams. The relative errors between the estimated and measured chlorophyll-a were approximately 40 ~ 50%. Though the errors are somewhat large, the estimation process for chlorophyll-a may be useful in ungauged streams.

Watershed Modeling Research for Receiving Water Quality Management in Hwaseong Reservoir Watershed (화성호 유역의 수질관리를 위한 유역모델링 연구)

  • Jang, Jae-Ho;Kang, Hyeong-Sik;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.819-832
    • /
    • 2012
  • HSPF model based on BASINS was applied for the Hwaseong Reservoir watershed (HRW) to evaluate the feasibility of water quality management. The watershed was divided into 45 sub-basins considering various watershed environment. Streamflow was calibrated based on the measured meteorological data, discharge data of treatment plants and observed streamflow data for 2010 year. Then the model was calibrated against the field measurements of water qualities, including BOD, T-N and T-P. In most cases, there were reasonable agreements between observed and predicted data. The validated model was used to analyze the characterization of pollutant load from study area. As a result, Non-point source pollutant loads during the rainy season was about 66~78% of total loads. In rainy-season, water quality parameters depended on precipitation and pollutant loads patterns, but their concentration were not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. As another result of evaluation for load duration curves, in order to improve water qualities to the satisfactory level, the watershed managements considering both time-variant and pollution sources must be required in the HRW. Overall, it was found that the model could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

A Study on Spatial and Temporal Distribution Characteristics of Coastal Water Quality Using GIS (GIS를 이용한 연안수질의 시공간적 분포 특성에 대한 연구)

  • Cho, Hong-Lae;Jeoung, Jong-Chul
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.223-234
    • /
    • 2006
  • In order to examine spatio-temporal characteristics of coastal water quality, we applied GIS spatial analysis to the water quality data collected from observation points located on Korean coastal area during 1997$\sim$2004. The water quality parameters measured included: chlorophyll-a, pH, DO, COD, SS, dissolved inorganic nitrogen, dissolved inorganic phosphorous, salinity, temperature. The water quality data used in this paper was obtained only at selected sites even though they are potentially available at any location in a continuous surface. Thus, it is necessary to estimate the values at unsampled locations so as to analyze spatial distribution patterns of coastal water quality, Owing to this reason, we applied IDW(inverse distance weighted) interpolation method to water quality data and evaluated the usefulness of IDW method. After IDW interfolation method was applied, we divided the Korean coastal area into 46 sections and examined spatio-temporal patterns of each section using GIS visualization technique. As a result of evaluation, we can blow that IDW interpolation and GIS are useful for understanding spatial and temporal distribution characteristics of coastal water quality data which is collected from a wide area far many years.

  • PDF

Self-diagnosis Algorithm for Water Quality Sensors Based on Water Quality Monitoring Data (수질 모니터링 데이터 기반의 수질센서 자가진단 알고리즘)

  • HongJoong Kim;Jong-Min Kim;Tae-Hyung Kang;Gab-Sang Ryu
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Today, due to the increase in global population growth, the international community is discussing solving the food problem. The aquaculture industry is emerging as an alternative to solving the food problem. For the innovative growth of the aquaculture industry, smart fish farms that combine the fourth industrial technology are recently being distributed, and full-cycle digitalization is being promoted. Water quality sensors, which are important in the aquaculture industry, are electrochemical portable sensors that check water quality individually and intermittently, making it impossible to analyze and manage water quality in real time. Recently, optically-based monitoring sensors have been developed and applied, but the reliability of monitoring data cannot be guaranteed because the state information of the water quality sensor is unknown. Therefore, this paper proposes an algorithm representing self-diagnosis status such as Failure, Out of Specification, Maintenance Required, and Check Function based on monitoring data collected by water quality sensors to ensure data reliability.

Water Quality Estimation Using Spectroradiometer and SPOT Data

  • Hsiao, Kuo-Hsin;Wu, Chi-Nan;Liao, Tzu-Yi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.663-665
    • /
    • 2003
  • A field spectroradiometer SE-590 was used to measure the spectral reflectance of water body. The reflectance was calculated as the ratio of surface water radiance to the standard whiteboard radiance nearly measured at the same time. Water samples were taken simultaneously for determining their chlorophyll-a, suspended solid (SS) and transparency. The relationships between those water quality parameters and spectral reflectance were analy zed using stepwise multiple regression to derive optimal prediction models . The multiple regression was also applied to the SE-590 simulated SPOT bands. The SPOT image of the same day was also analyzed using the same method to compare the statistical results. It showed that the multiple regression models using the SE-590 reflectance data got the best water quality prediction results. The evaluated RMS error of chlorophyll-a, SS and transparency of water quality parameters were 0.57 ug/l, 0.2 mg/l and 0.17 m, respectively, and the RMS errors were 0.36 ug/l, 0.49 mg/l and 0.42 m for SPOT data, respectively. The SE-590 simulated SPOT three bands data obtained the worst results and the RMS errors were 1.77 ug/l, 0.49 mg/l and 0.37 m, respectively.

  • PDF