• Title/Summary/Keyword: Water level sensor

Search Result 173, Processing Time 0.03 seconds

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection (색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.87-100
    • /
    • 2021
  • With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.

Design of WSN based Field Server for Local Weather Monitoring (국지기상 모니터링을 위한 WSN 기반 필드서버 제작)

  • An, Seong-Mo;Kim, Jae-Gyeong;Yoo, Jae-Ho;Jung, Sang-Joong;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.493-500
    • /
    • 2011
  • Recently, there has been an increase in the number of disaster victims locally due to climate change and a variety of frequently occurring natural disasters. The damage caused by abrupt weather change in local area by typical weather forecasting techniques is very limited and difficult. Recently local area weather monitoring system using wireless sensor network technology has been very actively studied. Thus an IEEE 802.15.4-based weather field server to measure and monitor the local weather changes was designed and developed in this study. The proposed weather field server utilizes a wireless sensor node and weather sensors to collect weather information such as temperature, humidity, illumination, dew point, barometric pressure, and water level. The integrated weather sensor board was designed to respond quickly to weather changes, and provide feedback to the server PC. Each weather information is analyzed in the server PC to establish a program to monitor and analyze the local area or the area of abrupt climate change in order to provide warning signals in case of disaster events in local.

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF

Effect of EC Level of Nutrient Solution on the Yield and Quality of Cut Rose Based on Mixed Coir and Perlite (코이어와 펄라이트 혼합배지를 이용한 절화장미 수경재배 시급액농도가 수량 및 품질에 미치는 영향)

  • Choi, Gyeong-Lee;Cho, Myeong-Whan;Seo, Tae-Cheol;Roh, Mi-Young;Rhee, Han-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.348-353
    • /
    • 2009
  • Organic materials reveal the remarkable absorption and high buffer capacity for nutrient. Hence, organic materials need some different nutrient management skill from inorganic one. The objective of this study was to evaluate the effect of EC level of nutrient solution on the yield and quality of cut rose grown in the mixed substrate of coir and perlite. 3 EC levels of nutrient solution was treated, which were 0.7, 1.0, 1.3 times of standard solution (Aichiken solution, Japan) for cut rose hydroponics. EC of the standard solution was changed by season following as 1.4 (Apr.~June), 1.0 (July~Aug.), 1.4 (Sep.~Oct.), and $1.6dS{\cdot}m^{-1}$ (Nov.~Mar.) subsequently. The supply of nutrient solution was controlled by the signal of water potential at -5kPa using frequency domain reflectometry (FDR) sensor. As the results, marketable yield was similar for all treatments until 3rd harvest, but was decreased in high EC level from 4th harvest to 7th harvest as final. 0.7 times of standard solution decreased the ratio of unmarketable rose having short stem below 70cm and increased the ratio of high quality rose having long stem above 91cm. The flower weight and stem diameter of cut rose was higher in the low EC treatment than the others.

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

A Study on the Seepage Behavior of Embankment with Weak Zone using Numerical Analysis and Model Test (취약대를 가진 모형제방의 침투거동에 관한 연구)

  • Park, Mincheol;Im, Eunsang;Lee, Seokyoung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.5-13
    • /
    • 2016
  • This research is focused on the seepage behavior of embankment which had the weak zone with big permeability. The distributed TDR (Time Domain Reflectometer) and point sensors such as settlement gauge, pore water pressuremeter, vertical total stressmeter, and FDR (Frequency Domain Reflectometer) sensor were used to measure the seepage characteristics and embankment behavior. Also, the measured data were compared to the data of 2-D and 3-D numerical analysis. The dimension of model embankment was 7 m length, 5 m width and 1.5 m height, which is composed of fine-grained sands and the water level of embankment was 1.3 m height. The seepage behavior of measuring and numerical analysis were very similar, it means that the proper sensing system can monitor the real-time safety of embankment. The result by 2-D and 3-D numerical analysis showed similar saturation processing, however in case of weak zone, the phreatic lines of 2-D showed faster movement than that of 3-D analysis, and finally they converged.

Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests (광릉 활엽수림과 침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산)

  • Kang, Min-Seok;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.233-246
    • /
    • 2009
  • The partitioning of evapotranspiration (ET) into evaporation (E) and transpiration (T) is critical in understanding the water cycle and the couplings between the cycles of energy, water, and carbon. In forests, the total ET measured above the canopy consists of T from both overstory and understory vegetation, and E from soil and the intercepted precipitation. To quantify their relative contributions, we have measured ET from the floors of deciduous and coniferous forests in Gwangneung using eddy covariance technique from 1 June 2008 to 31 May 2009. Due to smaller eddies that contribute to turbulent transfer near the ground, we performed a spectrum analysis and found that the errors associated with sensor separation were <10%. The annual sum of the understory ET was 59 mm (16% of total ET) in the deciduous forest and 43 mm (~7%) in the coniferous forest. Overall, the understory ET was not negligible except during the summer season when the plant area index was near its maximum. In both forest canopies, the decoupling factor ($\Omega$) was about ~0.15, indicating that the understory ET was controlled mainly by vapor pressure deficit and soil moisture content. The differences in the understory ET between the two forest canopies were due to different environmental conditions within the canopies, particularly the contrasting air humidity and soil water content. The non-negligible understory ET in the Gwangneung forests suggests that the dual source or multi-level models are required for the interpretation and modeling of surface exchange of mass and energy in these forests.

Anti-Obesity Effect of By-Product from Soybean on Mouse Fed a High Fat Diet (고지방 식이로 유도된 비만 마우스에서 대두 부산물인 순물과 침지수의 항비만 효과)

  • Park, Young Mi;Lim, Jae Hwan;Seo, Eul Won
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.168-177
    • /
    • 2015
  • Here we study the anti-obesity effects of by-product from soybean on mouse fed high fat diet. The body weight gain, visceral and subcutaneous adipose tissue weight, liver and epididymal adipose tissue weight in freeze-dried soybean-soaking-water (SSW) powder fed group showed lower level than those in high fat diet (HFD) group by determining with weight measuring and histological methods. Also, histological analyses of the liver and fat tissues of SSW grouped mice revealed significantly less number of lipid droplets formation and smaller size of adipocytes compared to the HFD group. Moreover, the levels of total serum cholesterol, LDL-cholesterol and the atherogenic index were decreased in the SSW groups. Especially, in SSW group, the levels of phosphorylation of two lipid oxidation enzymes, adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylasse (ACC) were elevated hence that may activate fatty acid oxidation. But AST and ALT levels were not changed in blood. By micro-CT analysis of abdomen, SSW groups significantly showed a tendency to decrease visceral and subcutaneous fats as well as fat-deposited areas compared to HFD group. Taken together, we suggest that soybean soaking water has a function in ameliorating obesity through inhibiting lipid synthesis as well as stimulating fatty acid oxidation.

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.