• Title/Summary/Keyword: Water electrolysis

Search Result 374, Processing Time 0.029 seconds

A Study on Analysis of the Hydrogen-Oxygen Gas Generator (수산화가스 발생기의 모델링 및 특성해석)

  • Kang, B.H.;Lee, J.M.;Mok, H.S.;Choe, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.198-201
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electrical for the high efficiency of water electrolysis equipment. First, chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated. For basic experiment, unit electrode of singular electrolysis electrode is manufactured and experimented, results are compared and analyzed with simulation, and the electrolysis is electrically equivalent.

  • PDF

Model development for chlorine generation using electrolysis (전기분해에 의한 잔류염소 생성 예측 모델 개발)

  • Sohn, Jinsik;Lee, Sunjae;Shin, Chorong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.331-337
    • /
    • 2009
  • Electrolysis produces hypochlorous acid by using a small quantity of NaCl as electrolyte. This process maximizes the stabilization of drinking water through the control of chlorine residual concentration. This study investigated free chlorine generation by an electrolytic method using $Ti/IrO_2$ and stainless steel. The generation of free chlorine was increased with increasing hydraulic retention time, voltage, chlorine ion concentration and the number of electrodes. However, the change of pH did not affect the generation of free chlorine. There was no significant difference on the behavior of chlorine concentration between electrolytic method and NaOCl injection. In this study, the concentration of free chlorine predicted model based on power functional model was developed various under conditions. Electrolysis free chlorine generation model can be effective tool in the estimation of free chlorine generation.

Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis (특허분석에 의한 수전해 수소제조 기술동향)

  • Hwang, Gab-Jin;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal (열처리된 친수성 카본 페이퍼 전극의 전기 물 분해 특성)

  • Yoo, Il-Han;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.241-245
    • /
    • 2016
  • Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Hydrogen Production through High Temperature Steam Electrolysis System (고온 수증기 전해 수소제조)

  • Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Hydrogen energy id the 2nd clean energy able to be produced from the abundant resources, and the products of combustion or reaction do not spread an environmental pollution. Also, the hydrogen is the chemical media easily to transport and storage as energy source. The hydrogen production technology using by water splitting through electrolysis could be usable as a permanent renewable energy system without the environmental impact. The key technology of high temperature steam electrolysis is the development of an electrolyte rapidly to conduct an oxygen or proton ion decomposed from water. Subsequently, the important technology is to keep the joining technology of an electrolyte membrane and electrode materials to affect into the current efficiency.

Investigating adsorption ion characteristics on cobalt oxides catalyst in electrolysis of waste alkaline solutions using ab-initio study (제일원리 전산모사법을 이용한 폐양액 수전해용 코발트 산화물 촉매의 흡착 이온 특성 연구)

  • Juwan Woo;Jong Min Lee;MinHo Seo
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.427-436
    • /
    • 2023
  • In the industry, it is recognized that human activities significantly lead to a large amount of wastewater, mainly due to the increased use of water and energy. As a result, the growing field of wastewater resource technology is getting more attention. The common technology for hydrogen production, water electrolysis, requires purified water, leading to the need for desalination and reprocessing. However, producing hydrogen directly from wastewater could be a more cost-effective option compared to traditional methods. To achieve this, a series of first-principle computational simulations were conducted to assess how waste nutrient ions affect standard electrolysis catalysts. This study focused on understanding the adsorption mechanisms of byproducts related to the oxygen evolution reaction (OER) in anion exchange membrane (AEM) electrolysis, using Co3O4 as a typical non-precious metal catalyst. At the same time, efforts were made to develop a comprehensive free energy prediction model for more accurate predictions of OER results.

Evaluation of the Performance of Water Electrolysis Cells and Stacks for High-Altitude Long Endurance Unmanned Aerial Vehicle (고고도 무인기용 수전해 셀 및 스택의 제작 및 성능 평가)

  • JUNG, HYE YOUNG;LEE, JUNYOUNG;YOON, DAEJIN;HAN, CHANGHYUN;SONG, MINAH;LIM, SUHYUN;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • The experiments related on structure and water electrolysis performance of HALE UAV stack were conducted in this study. Anode catalyst $IrRuO_2$ was prepared by Adam's fusion methods as 2~3 nm nano sized particles, and the cathode catalyst was used as commercial product of Premetek. The MEA (membrane electrode assembly) was manufactured by decal methods, anode and anode catalytic layers were prepared by electro-spray. HALE stack was composed of 5 multi-cells as $0.2Nm^3/hr$ hydrogen production rate with hydrogen pressure as 10 bar. The water electrolysis performance was investigated at atmospheric pressure and temperature of $55^{\circ}C$. Best performance of HALE UAV stack was recorded as cell voltage efficiency as 86%.

Flow Characteristics Analyses within the Electrolysis Reactor using the CFD Simulation Technique (CFD 모사 기법을 이용한 전해반응기 내부 흐름 특성 분석)

  • Jeong, Jongsik;Lee, Seungjae;Lee, Jaebok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.745-753
    • /
    • 2016
  • The objective of this study was to investigate design factors of the electrolysis reactor through the CFD(computational fluid dynamics) simulation technique. Analyses of velocity vector, streamline, chloride ion concentration distribution showed differences in flow characteristics between the plate type electrode and the porous plate type electrode. In case of the porous plate type electrode, chlorine gas bubbles generated from the anode made upward density flow with relatively constant velocity vectors. Electrolysis effect was more expected with the porous plate type electrode from the distribution of chloride ion concentration. The upper part of the electrolysis reactor with the porous plate type electrode had comparatively low chloride concentration because chloride was converted to the chlorine gas formation. Decreasing the size and increasing total area of rectifying holes in the upper part of cathodes, and widening the area of the rectifying holes in the lower part of cathodes could improve the circulation flow and the efficiency of electrolysis reactor.

Research and Development Trends in Seawater Electrolysis Systems and Catalysts (해수 수전해 시스템 및 촉매 연구 개발 동향)

  • Yoonseong Jung;Tuan Linh Doan;Ta Nam Nguyen;Taekeun Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.567-575
    • /
    • 2023
  • Water electrolysis is undergoing active research as one of the promising technologies for producing effective green hydrogen. Using seawater directly as a raw material for a water electrolysis system can solve the problem of the limitations of existing freshwater raw materials, as seawater accounts for approximately 97% of the water on Earth. At the same time, abundant by-product materials can be obtained, representative examples of which are Cl2, ClO-, Br2, and Mg(OH)2 produced during electrolysis, depending on their composition and pH environment. In order to develop a successful seawater electrolysis system and oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts, it is necessary to understand the causes and consequences of reactions that occur in the seawater environment. Therefore, in this paper, we will investigate the reaction mechanism and characteristics of the seawater electrolysis system as well as the research and development trends of electrochemical catalysts used in anode and cathode electrodes.