DOI QR코드

DOI QR Code

Investigating adsorption ion characteristics on cobalt oxides catalyst in electrolysis of waste alkaline solutions using ab-initio study

제일원리 전산모사법을 이용한 폐양액 수전해용 코발트 산화물 촉매의 흡착 이온 특성 연구

  • Juwan Woo (Department of Nanotechnology Engineering, Pukyong National University) ;
  • Jong Min Lee (Fuel Cell Research & Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research (KIER)) ;
  • MinHo Seo (Department of Nanotechnology Engineering, Pukyong National University)
  • 우주완 (부경대학교 공과대학 나노융합공학과) ;
  • 이종민 (한국에너지기술연구원 연료전지실증연구센터) ;
  • 서민호 (부경대학교 공과대학 나노융합공학과)
  • Received : 2023.11.28
  • Accepted : 2023.12.15
  • Published : 2023.12.31

Abstract

In the industry, it is recognized that human activities significantly lead to a large amount of wastewater, mainly due to the increased use of water and energy. As a result, the growing field of wastewater resource technology is getting more attention. The common technology for hydrogen production, water electrolysis, requires purified water, leading to the need for desalination and reprocessing. However, producing hydrogen directly from wastewater could be a more cost-effective option compared to traditional methods. To achieve this, a series of first-principle computational simulations were conducted to assess how waste nutrient ions affect standard electrolysis catalysts. This study focused on understanding the adsorption mechanisms of byproducts related to the oxygen evolution reaction (OER) in anion exchange membrane (AEM) electrolysis, using Co3O4 as a typical non-precious metal catalyst. At the same time, efforts were made to develop a comprehensive free energy prediction model for more accurate predictions of OER results.

Keywords

Acknowledgement

This work was supported by a Research Grant of Pukyong National University in 2022 (202308630001)

References

  1. E. A. Parson, D. W. Keith, Fossil fuels without CO2 emissions, Science, 282 (1998) 1053 - 1054. https://doi.org/10.1126/science.282.5391.1053
  2. S. Perathoner, G. Centi, CO2 recycling: A key strategy to introduce green energy in the chemical production chain, ChemSusChem, 7 (2014) 1274-1282. https://doi.org/10.1002/cssc.201300926
  3. S. Fankhauser, S. M. Smith, M. Allen, K. Axelsson, T. Hale, C. Hepburn, J. M. Kendall, R. Khosla, J. Lezaun, E.M. Larson, M. Obersteiner, L. Rajamani, R. Rickaby, N. Seddon, T. Wetzer, The meaning of net zero and how to get it right, Nature Climate Change, 12 (2021) 15-21. https://doi.org/10.1038/s41558-021-01245-w
  4. N. L. Panwar, S. C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037
  5. M. K. Datta, K. Kadakia, O. I. Velikokhatnyi, P. H. Jampani, S. J. Chung, J. A. Poston, A. Manivannan, P. N. Kumta, High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for pem based water electrolysis, Journal of Materials Chemistry A, 1 (2013) 4026-4037 . https://doi.org/10.1039/c3ta01458d
  6. C. J.Winter, Hydrogen energy-abundant, efficient, clean: A debate over the energy-system-of-change, International Journal of Hydrogen Energy, 34 (2009) S1-S52 . https://doi.org/10.1016/j.ijhydene.2009.05.063
  7. M. W. Kanan, D. G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2+, Science 321 (2008) 1072-1075. https://doi.org/10.1126/science.1162018
  8. L. Chen, X. Dong, Y. Wang, Y. Xia, , Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide, Nature communications, 7 (2016).
  9. M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production-a review, Renewable and Sustainable Energy Reviews, 29 (2014) 573-588. https://doi.org/10.1016/j.rser.2013.08.090
  10. P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renewable and Sustainable Energy Reviews, 67 (2017) 597-611. https://doi.org/10.1016/j.rser.2016.09.044
  11. J. D. Holladay, J. Hu, D. L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis Today, 139 (2009) 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  12. Y. Chen, F. Mojica, G. Li, P. Y. A Chuang, Experimental study and analytical modeling of an alkaline water electrolysis cell, International Journal of Energy Research, 41 (2017) 2365-2373.
  13. S. Shiva Kumar, V. Himabindu, Hydrogen production by pem water electrolysis - a review, Materials Science for Energy Technologies, 2 (2019) 442-454. https://doi.org/10.1016/j.mset.2019.03.002
  14. N. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, C. Bock, Anion-exchange membrane water electrolyzers, Chemical Reviews, 122 (2022) 11830-11895.
  15. M. Cartaxo, J. Fernandes, M. Gomes, Wastewater electrolysis for hydrogen production, Portugaliae Electrochimica Acta, 41 (2023) 57-80.
  16. J. Y. Jeong, Y. S.Park, J. Jeong, K. B. Lee, D. Kim, K. Y. Yoon, H. S. Park, J. Yang, A NiCo2O4 electrocatalyst with a thin graphitic coating for the anion exchange membrane water electrolysis of wastewater, Journal of Materials Chemistry A, 10 (2022) 25070-25077.
  17. V. Kumar, A review on the feasibility of electrolytic treatment of wastewater: Prospective and constraints, Archives of Agriculture and Environmental Science, 2 (2017) 52-62.
  18. K. A. Baseden, J. W. Tye, Introduction to density functional theory : Calculations by hand on the helium atom, Journal of Chemical Education, 91 (2014) 2116-2123. https://doi.org/10.1021/ed5004788
  19. A. Raveendran, M. Chandran, R. Dhanusuraman, A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts, RSC Advances,13 (2023) 3843-3876.
  20. M. A. Hubert, L. A. King, T. F. Jaramillo, Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers, ACS Energy Letters, 7 (2021) 17-23. https://doi.org/10.1021/acsenergylett.1c01869
  21. M. J. Jang, J.Yang, J. Lee, Y. S. Park, J. Jeong, S. M. Park, J. Y. Jeong, Y. Yin, M. H. Seo, S. M. Choi, K. H. Lee, Superior performance and stability of anion exchange membrane water electrolysis: Ph-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction, Journal of Materials Chemistry A, 8 (2020) 4290-4299. https://doi.org/10.1039/C9TA13137J
  22. Y. S. Park, J. Yang, J. Lee, M. J. Jang, J. Jeong, W.S. Choi, Y. Kim, Y. Yin, M. H. Seo, Z. Chen, S. M. Choi, Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance, Applied Catalysis B: Environmental, 278 (2020) 119276.
  23. J. Hafner, Ab-initio simulations of materials using vasp: Density-functional theory and beyond, Journal of Computational Chemistry, 29(2008) 2044-78 . https://doi.org/10.1002/jcc.21057
  24. G. Kresse, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physcal Review B, 54 (1996) 11169.
  25. P. E. Blochl, Projector augmented-wave method, Phys Rev B Condens Matter, 50 (1994) 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953
  26. G. Kresse, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, 59 (1996) .
  27. J. Paier, R. Hirschl, M. Marsman, G. Kresse, The perdew-burke-ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set, The Journal of Chemical Physics, 122 (2005) 234102 .
  28. B. Hammer, L. B. Hansen, J. K. Norskov, Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals, Physical Review B, 59 (1999) .
  29. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, 77 (1996) 3865.
  30. L. Lin, J. Lu, L. Ying, Numerical methods for kohn-sham density functional theory, Acta Numerica, 28 (2019) 405-539. https://doi.org/10.1017/S0962492919000047
  31. M. Yu, S. Yang, C. Wu, N. Marom, Machine learning the hubbard u parameter in dft+u using bayesian optimization, NPJ Computational Materials, 6 (2020).
  32. F. J. D. Santos, N. Marzari, Fermi energy determination for advanced smearing techniques, Physical Review B, 107 (2023).
  33. X. L. Xu, Z. H. Chen, Y. Li, W. K. Chen, J. Q. Li, Bulk and surface properties of spinel Co3O4 by density functional calculations, Surface Science, 603 (2009) 653-658. https://doi.org/10.1016/j.susc.2008.12.036
  34. G. Makov, M. C. Payne, Periodic boundary conditions in ab initio calculations, Physical Review B, 51 (1995).
  35. C. R. Weinberger, X. X. Yu, H. Yu, G. B. Thompson, Ab initio investigations of the phase stability in group ivb and vb transition metal nitrides, Computational Materials Science, 138 (2017) 333-345.
  36. T. Schuler, L. Messina, M. Nastar, Kineclue: A kinetic cluster expansion code to compute transport coefficients beyond the dilute limit, Computational Materials Science, 172 (2020) .
  37. S. H. Noh, D. H. Kwak, M. H. Seo, T. Ohsaka, B. Han, First principles study of oxygen reduction reaction mechanisms on n-doped graphene with a transition metal support, Electrochimica Acta, 140 (2014) 225-231. https://doi.org/10.1016/j.electacta.2014.03.076
  38. S. S. Han, H. M. Lee, Adsorption properties of hydrogen on (10,0) single-walled carbon nanotube through density functional theory, Carbon, 42 (2004) 2169-2177. https://doi.org/10.1016/j.carbon.2004.04.025
  39. B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-pt bimetallic nanodendrites with high activity for oxygen reduction, Science, 324 (2009) 1302-1305. https://doi.org/10.1126/science.1170377
  40. N. Danilovic, R. Subbaraman, K. C. Chang, S. H. Chang, Y. J. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y. T. Kim, D. Myers, V. R. Stamenkovic, N. M. Markovic, Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments, The Journal of Physical Chemistry Letters, 5 (2014) 2474-8. https://doi.org/10.1021/jz501061n
  41. K. S. Exner, J. Anton, T. Jacob, H. Over, Controlling selectivity in the chlorine evolution reaction over ruo(2)-based catalysts, Angewandte Chemie International Edition, 53 (2014) 11032-5. https://doi.org/10.1002/anie.201406112
  42. N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting, Angewandte Chemie International Edition, 54 (2015) 6251-4. https://doi.org/10.1002/anie.201501616
  43. W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction, Nano Energy, 43 (2018) 110-116. https://doi.org/10.1016/j.nanoen.2017.11.022