• Title/Summary/Keyword: Water bloom

Search Result 439, Processing Time 0.023 seconds

Effect of Environmental Factors on the Growth of Microcystis aeruginosa (Cyanobacteria) in Agricultural Reservoirs (농업용 저수지에서 환경 요인이 Microcystis aeruginosa (cyanobacteria) 성장에 미치는 영향)

  • Kwon, O-Chang;Park, Jung-Won;Chung, Gyu-Young;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1183-1189
    • /
    • 2011
  • The present study is aimed at examining the effects of the physico-chemical environmental factors of water systems on water bloom at Homin and Gagok reservoirs in Pungcheon-Myeon, Andong, Gyeongsangbuk-do. The mean water temperature and the contents of chlorophyll-a, total-nitrogen, total-phosphorus and phosphate-phosphorus were higher at the Gagok reservoir. On the other hand, the pH mean value was higher at the Homin reservoir. The mean value of microelements (Na, K, Mg, Fe, Si) was higher at the Gagok reservoir. The cyanobacteria which was considered to be the cause of water bloom at the two reservoirs was Microcystis aeruginosa. It started to grow in May and showed the highest standing crop in August. Between the increase of standing crop of M. aeruginosa and the water quality, correlation values of $Na^+$ (r=-0.910, p<0.05), $Fe^{2+}$ (r=-0.855, p<0.05) and $Si^{4+}$ (r=0.989, p<0.01) at the Homin reservoir increased amount of standing crop. Meanwhile, at the Gagok reservoir, the contents of $Na^+$ (r=-0.776, p<0.05), $Si^{4+}$ (r=0.899, p<0.05) were highly related to the increase of standing crop. Interestingly, Si, which is the limiting factor for diatoms, has a high correlation with standing crop of cyanobacteria. In conclusion, the water blooming is caused not by a simple factor but a synergistic effect due to complex actions including high concentrations of nitrogen and phosphorus ions and many other environmental factors.

A Study on the Impacts of Paste Type Torrefied Wood Flour Coagulants on Water Ecosystem (반탄화목분 Paste상 응집제의 수생태계 미치는 영향에 관한 연구)

  • YANG, Seung Min;LEE, Seok Eon;PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.709-720
    • /
    • 2019
  • Due to global warming and abnormal climate, the incidence and scale of green tracts in rivers and water intake dam are increasing every year. Therefore, in this study, developed eco friendly positively charged Torrefied Wood Flour(TWF) coagulant by reusing wood damaged by blight as a natural material. In order to evaluate the effect of coagulant on water ecosystem, green algae contaminated water was collected and TOC showed high removal rate of 86% ~ 92% under 1% and 5% TWF C-PAM treatment condition. The $NH_3-N$ showed 53% removal efficiency. The average pH of the polluted water was 7.9 in the case of hydrogen ion concentration, and the pH of the treated water was in the range of 6.5 ~ 7.7, It was found to be suitable for water quality standards. In ecotoxicity tests, all the results of the experiment showed that both the number of green algae and that of treated water were not affected by the survival of the daphnia. Therefore, as a result of the analyzing, developed paste type TWF coagulants is considered to be able to remove algae using natural resources.

Application of Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) in Daecheong Reservoir using Automatic Water Quality Monitoring Data (대청호 내 실시간 수질측정자료를 이용한 CCME WQI의 적용)

  • Lim, Byungjin;Hong, Jiyoung;Yeon, Insung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.796-801
    • /
    • 2010
  • Water quality index (WQI) can be a great tool that allows experts to translate large amount of complex water quality data into a format more easily understood by the public and policy makers. Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) can be calculated with the three factors (Scope: $F_1$, Frequency: $F_2$, Amplitude: $F_3$). After all, the WQI for a specific site is produced as a number between 0 to 100; the scale is also divided into five categories, i.e., Excellent, Good, Fair, Marginal and Poor. The WQI was found to be highly related to Chl-a, pH, temperature among the collected items. When the more input parameters were used, the range of variation generally became smaller. $F_3$ among the factors of WQI was influenced by algae. It showed a similar variation tendency between WQI and algal bloom in 2008.

The Characteristics of Toxin Production in the Korean Toxic Cyanobacteria (국내산 유독 남조류의 독소생산 특성)

  • Kim, Hwa-Bin;Park, Hae-Kyung;Shin, Kyodong;Moon, Jeong-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.834-840
    • /
    • 2010
  • To find out the toxin production characteristics of Korean harmful cyanobacteria, we isolated 14 cyanobacterial strains from Korean lakes and rivers and analyzed the kinds and cellular content of microcystins (MCYSTs) of cyanobacterial isolates using cultured biomass. And we measured the MCYSTs production by growth phase of two representative toxic strains, Microcystis aeruginosa (HG-015) and Anabaena planktonica (HG-012). Among seven cyanobacteral species, Microcystis wesenbergii showed the highest cellular MCYSTs content. MCYST-RR was the most dominant toxin reaching more than 85% of MCYSTs produced by isolated cyanbacterial strains. During the mass culture, Microcystis aeruginosa (HG-015) showed the highest yield and accumulation of MCYSTs in the exponential growth phase. However the cellular content of chlorophyll a and MCYSTs of Anabaena planktonica (HG-012) showed higher value in the stationary and early death phase than in the exponential growth phase. Our results suggest that control and removal of harmful cyanobacterial bloom before exponential growth phase may be effective to prevent health risk of cyanobacterial toxins in the drinking water sources.

Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning (머신러닝과 딥러닝을 이용한 저수지 유해 남조류 발생 예측)

  • Kim, Sang-Hoon;Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1167-1181
    • /
    • 2021
  • In relation to the algae bloom, four types of blue-green algae that emit toxic substances are designated and managed as harmful Cyanobacteria, and prediction information using a physical model is being also published. However, as algae are living organisms, it is difficult to predict according to physical dynamics, and not easy to consider the effects of numerous factors such as weather, hydraulic, hydrology, and water quality. Therefore, a lot of researches on algal bloom prediction using machine learning have been recently conducted. In this study, the characteristic importance of water quality factors affecting the occurrence of Cyanobacteria harmful algal blooms (CyanoHABs) were analyzed using the random forest (RF) model for Bohyeonsan Dam and Yeongcheon Dam located in Yeongcheon-si, Gyeongsangbuk-do and also predicted the occurrence of harmful blue-green algae using the machine learning and deep learning models and evaluated their accuracy. The water temperature and total nitrogen (T-N) were found to be high in common, and the occurrence prediction of CyanoHABs using artificial neural network (ANN) also predicted the actual values closely, confirming that it can be used for the reservoirs that require the prediction of harmful cyanobacteria for algal management in the future.

Effects of Dissolved Oxygen and Depth on the Survival and Filtering Rate and Pseudofeces Production of a Filter-feeding Bivalve (Unio douglasiae) in the Cyanobacterial Bloom (남조류 대발생 환경에서 수심과 용존산소 변화에 따른 담수산 이매패(말조개)의 생존율, 여과율 및 배설물 생산)

  • Park, Ku-Sung;Kim, Baik-Ho;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.50-60
    • /
    • 2008
  • We performed the experiment to evaluate the effect of different DO concentrations (0.5, 4.5 and 9.0 $mgO_2L^{-1}$) and water depths (20, 50 and 80 cm) on the filtering rate, mortality, and pseudifeces production of Unio douglasiae against the cyanobacterial bloom (mainly Microcystis aeruginosa). A solitary-living bivalve U. douglasiae was collected in the upstream region of the North Han River (Korea). The harvested mussels were carefully transferred to the laboratory artificial management system, which was controlled temperature $(18{\pm}2^{\circ}C)$, flow rate (10L $h^{-1}$), food $(Chlorella^{TM})$, sediment (pebble and clay), light intensity (ca. $20{\mu}mol$ photons), and photocycle (12 L : 12 D). In the field observation, the mussel mortality was significantly correlated with water temperature, pH and DO concentration (P<0.05). The mortality was decreased with water depth; 65, 90, 80% of mortality at 20, 50, 80 cm water-depth, respectively. Filtering rate (FR) showed the highest value at 50 cm water depth, and thereby the concentration of chlorophyll-${\alpha}$ decreased continuously by 94% of the control at the end of the experiment. In contrast, FR decreased by 34% of the initial concentration at 20 cm water depth. Over the given water-depth range, the mussel FR ranged from $0.15{\sim}0.20L\;gAFDW^{-1}hr^{-1}$ during the 18hrs of experiment, and thereafter, they appeared to be approximately 0.11, 0.26 and 0.30 L $gAFDW^{-1}hr^{-1}$ at 20, 50 and 80cm water depth, respectively. FR was highest with the value of 0.46L $gAFDW^{-1}hr^{-1}\;at\;0.5mgO_2 L^{-1}$ at the early stage of the experiment, while it increased with DO concentration. Maximum pseudofaeces production was 11.2 mg $gAFDW^{-1}hr^{-1}\;at\;9.0mgO_2L^{-1}$. Our results conclude that U. douglasiae has a potential to enhance water quality in eutrophic lake by removing dominant cyanobacteria, but their effects vary with environmental parameters and the water depth at which they are located.

Effects of CellCaSi and Bioflocculant on the Control of Algal Bloom (규산질다공체와 미생물응집제의 녹조제어 효과)

  • 박명환;이석준;윤병대;오희목
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.129-135
    • /
    • 2001
  • The effects of CellCaSi and bioflocculant on the control of algal bloom were investigated in enclosures in a small eutrophic pond. The bioflocculant produced by a bacterial strain S-2 was finally selected to remove Microcystis aeruginosa which was a dominant species of algal bloom in the pond. Enclosure experiment showed that phosphorus concentration decreased dramatically from $131\mu{g}\ell^{-1}$ (Control) to $1-14\mu{g}\ell^{-1}$ in three CellCaSi-enriched enclosures. Chlorophyll $-\alpha$ concentration also decreased from $215\mu{g}\ell^{-1}$ (Control) to $59\mu{g}\ell^{-1}$ by the addition of CellCaSi $(1g\ell^{-1}$, bioflocculant $(2ml\ell^{-1}$, calcium chloride $(1g\ell^{-1}$ and ferric chloride $(2mg\;Fe\ell^{-1})$ in Enclosure 4. From the results of the mouse acute toxicity test of the S-2 bioflocculant and the goldfish survival test in enclosures, it seems that both the S-2 bioflocculant and the CellCaSi do not show any severe toxicity in water system. Consequently, it was concluded that the bioflocculant and the CellCaSi could be used to control algal bloom in eutrophic waters by removing phosphorus and chlorophyll$-\alpha$.

  • PDF

Molecular Identification of the Bloom-forming Cyanobacterium Anabaena from North Han River System in Summer 2012 (북한강 수계 조류대발생 원인종 남조 Anabaena의 분자계통학적 검토)

  • Li, Zhun;Han, Myung-Soo;Hwang, Su-Ok;Byeon, Myeong-Seop;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.301-309
    • /
    • 2013
  • Between May and August 2012, a massive cyanobacterial bloom with Anabaena has been occurred throughout the North Han River. Sampling was conducted at one station on each lake, L. Uham, L. Cheongpyung, and L. Paldang, where occurred a dense bloom, in 13 July. According to the microscopic examination, the blooms was dominated by one specific filamentous cyanobacterium Anabaena and other phytoplankton. Morphologically, previous literature proven that this Anabaena species is A. crassa (Lemmermann) Komark.-Legn. & Cronberg. However, identification of species in a mixed population is complicated due to limited morphological differences. Therefore, with live sample including trichome, akinete and heterocyst, the sequences of 16S rRNA gene of Anabaena isolates were cloned and analyzed, and three 16S rRNA gene sequences of 1188~1520 bp in length were obtained. It was shown from the homologous analysis results that the obtained 16S rRNA sequences were highly homologous to the relevant sequences of A. crassa in GenBank. The 16S rRNA sequences of 63 species were retrieved from GenBank, and the phylogenetic tree was constructed by using these sequences.

Optimal Growth Model of the Cochlodinium Polykrikoides (Cochlodinium Polykrikoides 최적 성장모형)

  • Cho, Hong-Yeon;Cho, Beom Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.217-224
    • /
    • 2014
  • Cochlodinium polykrikoides is a typical harmful algal species which generates the red-tide in the coastal zone, southern Korea. Accurate algal growth model can be established and then the prediction of the red-tide occurrence using this model is possible if the information on the optimal growth model parameters are available because it is directly related between the red-tide occurrence and the rapid algal bloom. However, the limitation factors on the algal growth, such as light intensity, water temperature, salinity, and nutrient concentrations, are so diverse and also the limitation function types are diverse. Thus, the study on the algal growth model development using the available laboratory data set on the growth rate change due to the limitation factors are relatively very poor in the perspective of the model. In this study, the growth model on the C. polykrikoides are developed and suggested as the optimal model which can be used as the element model in the red-tide or ecological models. The optimal parameter estimation and an error analysis are carried out using the available previous research results and data sets. This model can be used for the difference analysis between the lab. condition and in-situ state because it is an optimal model for the lab. condition. The parameter values and ranges also can be used for the model calibration and validation using the in-situ monitoring environmental and algal bloom data sets.

An Overview of Problems Cyanotoxins Produced by Cyanobacteria and the Solutions Thereby (남조류에서 발생하는 독소의 문제점과 대책)

  • Jeon, Bong-seok;Han, Jisun;Kim, Seog-Ku;Ahn, Jae-Hwan;Oh, Hye-Cheol;Park, Ho-Dong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.657-667
    • /
    • 2015
  • Cyanobacteria frequently dominate the freshwater phytoplankton community in eutrophic waters. Cyanotoxins can be classified according to toxicity as neurotoxin (Anatoxin-a, Anatoxin-a(s), Saxitoxins) or hepatotoxin (microcystins, nodularin, cylindrospermopsin). Microcystins are present within cyanobacterial cells generally, and they are extracted by the damage of cell membrane. It has been reported that cyanotoxins caused adverse effects and they are acculmulated in aquatic oganisms of lake, river and ocean. In natural, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, in process of water treatment, the use of copper sulfate to remove algal cells caused extraction of a mess of microcystins. Microcysitns are removed by physical, chemical and biological methods according to reports. The reduction of nutrients (N and P) inflow is basic method of prevention of cyanobacteria bloom formation. However, it is less effective than investigation because nutrients already present in the eutrophic lake. In natural lake, cyanobacteria bloom are not formed because macrophytes invade from coastal lake by eutrophication. Therefore, a coastal lake has to recover to prevent of cyanobacteria bloom formation.