• Title/Summary/Keyword: Water Treatment Technology

Search Result 3,008, Processing Time 0.036 seconds

Contributions of emergent vegetation acting as a substrate for biofilms in a free water surface constructed wetland

  • Zhao, Ruijun;Cheng, Jing;Yuan, Qingke;Chen, Yaoping;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • This study assessed the contribution of emergent vegetation (Phragmites australis, Typha latifolia, and Nelumbo nucifera) to the submerged surface area, the amount of biofilms attached to the submerged portions of the plants, and the treatment performance of a free water surface (FWS) constructed wetland. Results showed that a 1% increase ($31m^2$) in the vegetative area resulted in an increase of $220m^2$ of submerged surface area, and 0.48 kg Volatile Suspended Solids (VSS) of attached biofilm. As the vegetation coverage increased, effluent organic matter and total Kjeldahl nitrogen decreased. Conversely, a higher nitrate concentration was found in the effluent as a result of increased nitrification and incomplete denitrification, which was limited by the availability of a carbon source. In addition, a larger vegetation coverage resulted in a higher phosphorus in the effluent, most likely released from senescent biofilms and sediments, which resulted from the partial suppression of algal growth. Based on the results, it was recommended that constructed wetlands should be operated with a vegetation coverage of just under 50% to maximize pollutant removal.

Lignification in Relation to the Influence of Water-deficit Stress in Brassica napus

  • Lee, Bok-Rye;Zhang, Qian;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • To investigate lignification process and its physiological significance under water-deficit condition, the responses of peroxidases, polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) in relation to leaf water status to the short term of water deficit treatment in the leaves with different maturities in forage rape were measured. The significant decrease in relative water content (RWC) and leaf osmotic potential (${\Psi}{\pi}$) were apparent after 5 d of water-deficit treatment. The activity of guaiacol peroxidase (GPOD), ascorbate peroxidase (APOD), coniferyl alcohol peroxidase (CPOD), and syringaldazine peroxidase (SPOD) was depressed especially in middle and old leaves when compared with that of control leaves. On the other hand, in young leaves, a significant increase in CPOD (+34%) and SPOD (+24%) activity as affected by water-deficit treatment was apparent. The activation of PAL and PPO was observed in middle and old leaves for PAL and in young and middle leaves for PPO. These results suggest that peroxidases in middle and old leaves did not involve in lignification under mild water-deficit stress, whereas CPOD and SPOD in young leaves participate in lignification by a coordination with PAL and PPO to incorporate phenol and lignin into the cell walls.

Treatment of Concrete Wastewater in Repair of Bridge Deck (교량 바닥판 보수공사에서 발생하는 콘크리트 폐수처리 방안)

  • Lee, Bong-Hak;Choi, Pan-Gil;Kim, Jung-Ki
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.125-132
    • /
    • 2008
  • As of 2003, construction waste has been produced at the level of 130,614.8 tons/day, in which the amount of waste concrete was 92,639.1 tons/day and accounted for about 66.4% of the amount of construction waste. Waste concrete is mainly produced in construction work and civil engineering work. Especially, road surface crushing method using a large amount of water requires thorough management of concrete wastewater. The aim of this study was to analyze water pollution due to concrete wastewater generated in repair of bridge deck using road surface crushing equipment and to suggest reasonable countermeasures for solve the problem. In this study, it was surveyed current conditions of produced concrete wastewater in bridge deck repair, analyzed physical features of concrete wastewater, expected effects of water pollution on inflow rivers if it is not treated, established treatment plan of water pollution by categories, and calculated capacity of each treatment process and required amount of necessary chemicals. As a result of sampling wastewater generated in field sites and testing it at a lab scale, it was revealed that the original wastewater was produced in removing concrete from bridge deck slabs using surface crushing equipment whose pH was 12.53, CODMn was 12.910mg/L, SS was 547.0mg/L, and other heavy metals were included in extremely small quantities.

  • PDF

Water treatment sludge for removal of heavy metals from electroplating wastewater

  • Ghorpade, Anujkumar;Ahammed, M. Mansoor
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.92-98
    • /
    • 2018
  • Suitability of aluminium-based water treatment sludge (WTS), a waste product from water treatment facilities, was assessed for removal of heavy metals from an electroplating wastewater which had high concentrations of copper and chromium along with other heavy metals. Batch tests with simulated wastewater in single- and multi-metal solutions indicated the influence of initial pH and WTS dose on removal of six metals namely Cu(II), Co(II), Cr(VI), Hg(II), Pb(II) and Zn(II). In general, removal of cationic metals such as Pb(II), Cu(II) and Zn(II) increased with increase in pH while that of anionic Cr(VI) showed a reduction with increased pH values. Tests with multi-metal solution showed that the influence of competition was more pronounced at lower WTS dosages. Column test with diluted (100 times) real electroplating wastewater showed complete removal of copper up to 100 bed volumes while chromium removal ranged between 78-92%. Other metals which were present in lower concentrations were also effectively removed. Mass balance for copper and chromium showed that the WTS media had Cu(II) and Cr(VI) sorption capacities of about 1.7 and 3.5 mg/g of dried sludge, respectively. The study thus indicates that WTS has the potential to be used as a filtration/adsorption medium for removal of metals from metal-bearing wastewaters.

Current Status and Perspectives of Shale Gas Water Treatment Technology (셰일가스 수처리 기술 동향 및 전망)

  • Koo, Jae-Wuk;Lee, Sangho;Hong, Seungkwan;Kim, Joon Ha
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Shale gas has the potential to significantly change the way of the world's energy use. However, there are increasing concerns on environmental problems, particularly with respect to water use and wastewater treatment. This paper highlights issues related to shale gas water management and technologies currently used to address them. It also presents perspectives of emerging technologies for the treatment of shale gas wastewater, including forward osmosis (FO) and membrane distillation (MD).

Effect of Application Time and Amount of Liquid Pig Manure on Growth of Rice and Infiltration Water Quality (벼에 대한 돈분뇨 액비의 시용량 및 시용시기 구명)

  • Park, Baeg-Kyun;Lee, Jong-Sik;Cho, Nam-Jun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.147-152
    • /
    • 2001
  • This study was carried out to investigate the effect of application time and amount of liquid pig manure on growth and yield of rice plant and infiltration water quality. Liquid manure treatment with higher application rate and closer application time to transplanting time showed higher plant height and number of tiller at panicle formation stage, but it caused the plant disease and pest and lodging. In liquid manure treatment with higher application rate, number of panicles per hill and number of spikelets per panicle were higher but yield of rice was less than chemical fertilizer treatment due to low rate of ripeness and 1,000 grain weight. $NO_3-N$ concentration in infiltration water sample was increased with increasing application amount of liquid manure and closer application time to transplanting of rice plant. With consideration yield of rice and environment such as groundwater quality, the proper application amount were 150% and 100% of recommending N fertilizer level (11kg) at before winter and April or May treatment, respectively.

  • PDF

Effect of Plant Coverage on the Treatment Efficiency of Nitrogen and Phosphorus in Vegetative Filter Strips (식생피도가 식생여과대의 질소 및 인 처리효율에 미치는 영향)

  • Lee, Byungsoo;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.499-503
    • /
    • 2008
  • In order to control the non-point source pollution, a vegetative filter strips (VFS) was set up and the site-monitoring was performed. The objective of this study is to investigate the influence of the plant coverage on treatment efficiency of total nitrogen (T-N) and total phosphorus (T-P) using vegetative filter strips. According to the results, it seemed that the treatment efficiencies of T-N and T-P were closely related with the plant coverage ratio. The results showed that treatment efficiency of T-P average 50% at higher than 50% of the plant coverage and 20~23% at lower than 50% of the plant coverage. Also, the treatment efficiency of T-N increased with the increase of the plant coverage ratio.

Evaluation on the Possibility of a Retrofitting Treatment Using Moving Media of Existing Wastewater Treatment (유동상 Media를 이용한 기존하수처리장의 Retrofitting 가능성 평가)

  • Ko, Tae-Ho;Park, Woon-Ji;Lee, Chan-Ki
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.133-139
    • /
    • 2005
  • In this study, as MBBR(Moving Bed Biofilm Reactor) process using waste tire media is suggested for retrofitting with advanced wastewater treatment and the removal property of organic matter and nutrient and the capacity of media are evaluated through long-term operation with pilot plant following seasons, the application capacity of retrofitting with MBBR process to a existing wastewater treatment is studied. As a result of the long-term operation of the process, it is proved that there is no loss and abrasion of media, and also that it is possible to secure the sufficient attached bio-mass. The values of organic matter and nutrient in effluent are suitable for the strict discharged water quality standards in every season including winter.

  • PDF

Control strategy of primary clarifier operation in wastewater treatment plant during rainfall inflow (초기강우 유입 시 하수처리시설 일차 침전지 운전제어 전략)

  • You, Kwang Tae;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.947-950
    • /
    • 2019
  • The main feature of this paper is to provide a driving control strategy to improve the primary clarifier treatment efficiency in the initial rainfall inflow. With the recent development of IoT technology and sensing technology, the basis for operation control of wastewater treatment facilities has been improved. As a result of improving the efficiency of treatment of primary clarifier using on-line measurement results, it is possible to minimize the outflow of untreated sewage and contribute to the improvement of operation efficiency of wastewater treatment plants.

Present State and Strategies on Environmental Pollution by Animal Wastes (축산분뇨에 의한 환경오염현황과 대책)

  • 이명규;이재일
    • Journal of Animal Environmental Science
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 1996
  • The main purpose of this research project is to monitor the present state of agricultural environment and to develope the countermeasures for the protection of the environment from the pollution by animal wastes. The results of this research were described largely 3 parts, 1) Monitoring of present state of environmental pollution by animal wastes, 2) Monitoring of animal wastes treatment technology, 3) Strategies for the protection of environmental pollution from animal wastes in future. The current most important problems from animal wastes are water pollution and air pollution commonly regardless of domestic or foreign country. Especially, intensive livestocks breeding pattern in restricted area is actually a real reason of eutrophication, soil acidification, ground water contamination, irrigation water pollution. As a result from this research project, authors recommend the 3 type of strategies for the protection of environmental pollution by animal wastes, 1 . Development of non-discharge type of wastes treatment technology 2. Manufacturing local structure for animal waste recycling system 3. Development of new international environmental program for transfer bioresource and soil environment prevention.

  • PDF