• Title/Summary/Keyword: Water Region

Search Result 3,268, Processing Time 0.039 seconds

Spatial and Temporal Variation Characteristics between Water Quality and Pollutant Loads of Yeong-il Bau(I) - Seasonal Variation of River Discharge and Inflowing Pollutant Loads - (영일만 유입오염부하량과 수질의 시ㆍ공간적 변동특성(I) - 하천유량과 유입오염부하량의 계절변동 -)

  • 윤한삼;이인철;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • This study investigates the seasonal variation and spatial distribution characteristics of pollutant load, as executing the quality valuation of pollutant load inflowing into Yeong-il Bay from on-land including the Hyeong-san River. Annual total pollutant generating rate from Yeong-il Bay region are 202ton-BOD/day, 620ton-SS/day, 42ton-TN/day, and 16ton-TP/day, respectively. Particularly, the generating ration of the pollutant loads from the Hyeong-san River is greater than that of any other watershed of the Yeong-il Bay, of which BOd is about 78.2%, SS 88.5%, T-N 62.5%, T-P 73.1%, As calculating Tank model with input value of daily precipitation and evaporation of 2001 year in drainage basin of the Hyeong-san River, the estimated result of the annual river discharge effluence from this river is 830106㎥, As a result to estimating annual effluence rate outflowing at the rivers from each drainage basin. annual inflow pollutant rates are 10,633ton-BOD/year, 19,302ton-SS/year, 15,369ton-TN/year, 305ton-TP/year, respectively. The population congestion region of the Pohang-city is a greater source of pollutant loads than the Neang-Chun region with wide drainage area. Therefore, the quantity of TN inflowing into Yeong-il Bay is much more than T-P. The accumulation of pollutant load effluenced from on-land will happen at the inner coast region of Yeon-il Bay. Finally, We would make a prediction that the water quality will take a bad turn.

Nonlinear Tidal Characteristics along the Uldolmok Waterway off the Southwestern Tip of the Korean Peninsula

  • Kang, Sok-Kuh;Yum, Ki-Dai;So, Jae-Kwi;Song, Won-Oh
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.89-106
    • /
    • 2003
  • Analyses of tidal observations and a numerical model of the $M_2$ and $M_4$ tides in the Uldolmok waterway located at the southwestern tip of the Korean Peninsula are described. This waterway is well known fer its strong tidal flows of up to more than 10 knots at the narrowest part of the channel. Harmonic analysis of the observed water level at five tidal stations reveals dramatic changes in the amplitude and phase of the shallow water constituents at the station near the narrowest part, while survey results show a decreasing trend in local mean sea levels toward the narrow section. It was also observed that the amplitudes of semi-diurnal constituents, $M_2$ and $S_2$ are diminishing toward the narrowest part of the waterway. Two-dimensional numerical modeling shows that the $M_2$ energy flux is dominated by the component coming from the eastern boundary. The $M_2$ energy is inward from both open boundaries and is transported toward the narrow region of the channel, where it is frictionally dissipated or transferred to other constituents due to a strong non-linear advection effect. It is also shown that the $M_4$ generation is strong around the narrow region, and the abrupt decrease in the M4 amplitude in the region is due to a cancellation of the locally generated M4 with the component propagated from open boundaries. The superposition of both propagated and generated M4 contributions also explains the discontinuity of the M4 phase lag in the region. The tide-induced residual sea level change and the regeneration effect of the $M_2$ tide through interaction with $M_4$ are also examined.

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

Assessment of extreme precipitation changes on flood damage in Chungcheong region of South Korea

  • Bashir Adelodun;Golden Odey;Qudus Adeyi;Kyung Sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.163-163
    • /
    • 2023
  • Flooding has become an increasing event which is one of the major natural disasters responsible for direct economic damage in South Korea. Driven by climate change, precipitation extremes play significant role on the flood damage and its further increase is expected to exacerbate the socioeconomic impact in the country. However, the empirical evidence associating changes in precipitation extremes to the historical flood damage is limited. Thus, there is a need to assess the causal relationship between changes in precipitation extremes and flood damage, especially in agricultural region like Chungcheong region in South Korea. The spatial and temporal changes of precipitation extremes from 10 synoptic stations based on daily precipitation data were analyzed using the ClimPACT2 tool and Mann-Kendall test. The four precipitation extreme indices consisting of consecutive wet days (CWD), number of very heavy precipitation wet days (R30 mm), maximum 1-day precipitation amount (Rx1day), and simple daily precipitation intensity (SDII), which represent changes in intensity, frequency, and duration, respectively, and the time series data on flooded area and flood damage from 1985 to 2020 were used to investigate the causal relationship in the ARDL-ECM framework and pairwise Granger causality analysis. The trend results showed that majority of the precipitation indices indicated positive trends, however, CWD showed no significant changes. ARDL-ECM framework showed that there was a long-run relationship among the variables. Further analysis on the empirical results showed that flooded area and Rx1day have significant positive impacts on the flood damage in both short and long-runs while R30 mm only indicated significant positive impact in the short-run, both in the current period, which implies that an increase in flooded area, Rx1day, and R30 mm will cause an increase in the flood damage. The pairwise Granger analysis showed unidirectional causality from the flooded area, R30 mm, Rx1day, and SDII to flood damage. Thus, these precipitation indices could be useful as indicators of pluvial flood damage in Chungcheong region of South Korea.

  • PDF

Distribution and Origin of the Mid-depth Cold Water Pools Observed in the Jeju Strait in the Summer of 2019 (2019년 여름철 제주해협에서 관측된 중층 저온수의 분포와 기원)

  • DOHYEOP YOO;JONG-KYU KIM;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.19-40
    • /
    • 2023
  • To investigate the role of water masses in the Jeju Strait in summer on the shallow coastal region and the characteristics of water properties in the strait, temperature and salinity were observed across the Jeju Strait in June, July, and August 2019. The cold water pool, whose temperature is lower than 15℃, was observed in the mid-depths of the central Jeju Strait and on the northern bottom slope of the strait. The cold water pools have the lowest temperature in the strait. To identify water masses comprising the cold water pool in the Jeju Strait, mixing ratios of water masses were calculated. The mid-depth cold water pool of the Jeju Strait consists of 54% of the Kuroshio Subsurface Water (KSSW) and 33% of the Yellow Sea Bottom Cold Water (YSBCW). Although the cold water pool is dominantly affected by the KSSW, the YSBCW plays a major role to make the cold water pool maintain the lowest temperature in the Jeju Strait. To find origin of the cold water pool, temperature and salinity data from the Yellow Sea, East China Sea, and Korea Strait in the summer of 2019 were analyzed. The cold water pool was generated along the thermohaline frontal zone between the KSSW and YSBCW in the East China Sea where intrusion and mixing of water masses are active below the seasonal thermocline. The cold water in the thermohaline frontal zone had similar mixing ratio to the cold water pool in the Jeju Strait and it advected toward the Korea Strait and shallow coastal region off the south coast of Korea. Intrusion of the mid-depth cold water pool made temperature inversion in the Jeju Strait and affected sea surface temperature variations at the coastal region off the south coast of Korea.

A Realtime Expression Control for Realistic 3D Facial Animation (현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어)

  • Kim Jung-Gi;Min Kyong-Pil;Chun Jun-Chul;Choi Yong-Gil
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2006
  • This work presents o novel method which extract facial region und features from motion picture automatically and controls the 3D facial expression in real time. To txtract facial region and facial feature points from each color frame of motion pictures a new nonparametric skin color model is proposed rather than using parametric skin color model. Conventionally used parametric skin color models, which presents facial distribution as gaussian-type, have lack of robustness for varying lighting conditions. Thus it needs additional work to extract exact facial region from face images. To resolve the limitation of current skin color model, we exploit the Hue-Tint chrominance components and represent the skin chrominance distribution as a linear function, which can reduce error for detecting facial region. Moreover, the minimal facial feature positions detected by the proposed skin model are adjusted by using edge information of the detected facial region along with the proportions of the face. To produce the realistic facial expression, we adopt Water's linear muscle model and apply the extended version of Water's muscles to variation of the facial features of the 3D face. The experiments show that the proposed approach efficiently detects facial feature points and naturally controls the facial expression of the 3D face model.

  • PDF

Phytohydrography and the Vertical Pattern of Nitracline in the Southern Waters of the Korean East Sea in Early Spring (춘계 한국 동해 남부해역에서의 식물 수문학적 수역과 질산염약층의 수직양상)

  • Shim, Jae Hyung;Yang, Sung Ryull;Lee, Won Ho
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.15-28
    • /
    • 1989
  • A study on quantitative phytoplankton samples, hydrographic conditions (temperature, salinity, dissolved oxygen), and nutrients has been performed in the southern waters of the Korean East Sea in early spring. Phytoplankton community showed close correlation with hydrographic conditions. This study area could be divided into three phytohydrographic regions; 1) East Korean Warm Water Region (a branch of Tsushima Current), 2) North Korean Cold Water Region, and 3) offshore water region not affected by other two water regions. Vertical distribution of phytoplankton is dependent upon stability of water column and nutrient concentration. Nutrient concentration shows characteristic distribution according to water masses. N/P ratio of ca. 3 in surface layer indicates that nitrogen is the major limiting nutrient in this area. N/P removal ratio was 12.54 ($r^2$ = 0.96), consistent with the Redified ratio. Primary nitrite maxima at the nitracline depths are thought to be formed by phytoplankton exudation. Secondary nitrite maximum was observed in coastal area with dissolved oxygen content of >5.2 ml/l much higher than <0.25 ml/l in other areas. The mechanism of secondary maximum is different from that of other regions, and whether it may be due to in situ degradation of organic matter by bacterial activity is still open to discuss.

  • PDF

Analysis of Salinity Impacts on Agricultural and Urban Water Users

  • Michelsen, Ari;Sheng, Zhuping;McGuckin, Thomas;Creel, Bobby;Lacewell, Ron
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.13-13
    • /
    • 2011
  • The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande Salinity Management Program. The objectives of the Rio Grande Project Salinity Management Program are to reduce salinity concentrations, loading, and salinity impacts in the Rio Grande basin for the 270 mile river reach from San Acacia, New Mexico to Fort Quitman, Texasto increase usable water supplies for agricultural, urban, and environmental purposes. The focus of this first phase of the program is the development of baseline salinity and hydrologic information and a preliminary assessment of the economic impacts of salinity. An assessment of the economic impacts of salinity in this region was conducted by scientists at Texas A&M University's AgriLife Research Center at El Paso and New Mexico State University. Economic damages attributable to high salinity of Rio Grandewater were estimated for residential, agricultural, municipal, and industrial uses. The major impact issues addressed were: who is being affected the types of economic impacts the magnitude of economic damages overall and by user category and identification of threshold-effect levels for different types of water use. Salinity concentrations in this 270 mile reach of the river typically range from 480 ppm to 1,200 ppm, but can exceed 3,000 ppm in the lower section of this reach. Economic impacts include reductions in agricultural yields, reduced water appliance life, equipment replacement costs, and increased water supply costs. This preliminary economic assessment indicates annual damages of $10.5 million from increased water salinity. Under current water uses, municipal and industrial uses account for 75% of the total estimated impacts. However, agricultural impacts are based on current crop pattern yield reductions and, salinity leaching requirements and do not account for the impacts of reduced revenue from having to grow salinity tolerant, lower value crops. Actual damages are anticipated to be significantly higher with the inclusion of these additional agricultural impacts plus the future impacts from the growing population in the region. A more comprehensive economic analysis is planned for the second phase of this program. Results of the economic analysis are being used to determine the feasiblity of salinity control alternatives and what salinity reduction control measures will be pursued.

  • PDF

Comparison of environmental characteristics at Cicuta virosa habitats, an endangered species in South Korea

  • Shin, Cha Jeong;Nam, Jong Min;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • Cicuta virosa is an endangered species in Korea, which is a southern marginal area. To conserve and restore habitats of this plant, we investigated water and soil environmental characteristics and vegetation at four habitats during the growing season. The C. virosa habitats differed in community structure, water and substrate properties, and water regime. Although the total distribution ranges of the water and soil environments for C. virosa were wide and overlapped with the optimal environmental range of distribution of accompanying species, the optimal water level range for C. virosa was defined as $7{\pm}3.5$ cm. Water level was adjusted by substrate structure such as a mound of P. japonica and a floating mat comprised of accompanying species. A floating mat was an aid to maintain an optimal and stable water level in deep or fluctuating water and to prevent strong competition with prolific macrophytes. The GS sampling site, which had floating mats, could be a good model for C. virosa conservation in a warm temperate region, whereas the PC sampling sites, which experienced a water shortage in spring, provided a clue about the decline in C. virosa population size.