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Abstract
Cicuta virosa is an endangered species in Korea, which is a southern marginal area. To conserve and restore habitats of 

this plant, we investigated water and soil environmental characteristics and vegetation at four habitats during the grow-

ing season. The C. virosa habitats differed in community structure, water and substrate properties, and water regime. 

Although the total distribution ranges of the water and soil environments for C. virosa were wide and overlapped with 

the optimal environmental range of distribution of accompanying species, the optimal water level range for C. virosa was 

defined as 7 ± 3.5 cm. Water level was adjusted by substrate structure such as a mound of P. japonica and a floating mat 

comprised of accompanying species. A floating mat was an aid to maintain an optimal and stable water level in deep or 

fluctuating water and to prevent strong competition with prolific macrophytes. The GS sampling site, which had floating 

mats, could be a good model for C. virosa conservation in a warm temperate region, whereas the PC sampling sites, which 

experienced a water shortage in spring, provided a clue about the decline in C. virosa population size.
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INTRODUCTION

Cicuta virosa L. (water hemlock) is a perennial herb 

native to northern and central Europe, northern Asia, 

and northwestern North America (Mulligan and Munro 

1980, Lee 2003). Its population size has decreased in Ko-

rea which is a southern marginal area of distribution. C. 

virosa has been designated an endangered species by 

the Natural Environment Conservation Law and as a rare 

plant by the national arboretum in Korea (Korean Envi-

ronment Institute 2005, National Arboretum 2009). C. vi-

rosa is also listed in 17 of 47 Japanese prefectural red lists 

(Japanese Wildlife Research Association 2012). In Hun-

gary where almost all fens had been destroyed, C.virosa 

was a protected species (Tatár 2010). Few studies have 

investigated the specific properties of endangered plants 

to plan counter-measures for conservation in Korea (Suh 

et al. 2001). A few surveys of wild and rare plants in Korea 

have been carried out in the last decade due to urgency 

(e.g., Yoo et al. 2004, Jang et al. 2009, Song et al. 2010) and 

a series of studies on the conservation strategy for endan-

gered and reserved plants based on the ecological and ge-

netic characteristics has been performed by the National 

Institute of Environmental Research. However, C. virosa 

has not been a target species.

The water hemlock produces a lateral tuber before 

the root system dies in the fall and initiates a new plant 

the following spring (Kingsbury 1964). The plants persist 

by producing several new rootstocks from buds around 

the perimeter of the old rootstock (Mulligan and Munro 

1980). The roots and tubers of C. virosa are toxic (Panter 

et al. 1988), and most studies on C. virosa have concen-
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old abandoned paddy field. HS2 was a narrow streamlet, 

and water depth and vegetation were different between 

them. The Gunsan habitat (GS) is an abandoned reservoir 

that supplied water to a rice paddy at 28 m a.s.l. and is 

2° south of HS. Water flows into the reservoir from farm-

ing land through an agricultural irrigation system in May 

and June and flows out during the rainy season in July. 

The Pyeongchang habitat (PC) was the highest at 793 m 

a.s.l. and the most northern among the four sites. This site 

has been protected by fences since 2008. The waterway 

has been altered by road construction and this resulted in 

drying at this site in the spring. We verified that there has 

been a marked decrease in the C. virosa population since 

an earlier informal survey was performed in 2008. The 

Gangneung habitat (DG) was recorded for the first time as 

a C. virosa habitat in South Korea. Although it is a private 

agricultural waterway, it has been fenced and protected 

since 2007 with agreement by the owner. Water at this site 

became dependent on an artificial supply in 2011, and the 

C. virosa population size decreased to < 10 individuals. 

PC was the coldest with a heavy snowfall in winter (Fig. 

1). HS and GS showed similar temperatures during the 

summer. However, HS was colder than GS during the win-

ter. GS maintained above freezing temperatures except in 

January and HS received abundant rain in summer.

trated on its toxicology and pharmacology (e.g., Sarreveld 

1975, Panter et al. 1988, Strauß et al. 1996). Water hem-

lock grows in a very wet substrate and is usually found 

growing in streams, ditches, lakes, rivers, or marshy areas. 

This high water requirement limits its range (Panter et al. 

1988). Other environmental characteristics have not been 

studied well, even though basic ecological information is 

necessary to conserve C. virosa.

The primary goal of this study was to understand the 

environmental characteristics of C. virosa habitats. The 

specific objectives were to identify the major factors de-

termining C. virosa distribution and the reason that the 

C. virosa population has decreased by comparing the 

water and soil environmental characteristics of C. viro-

sa habitats. The water regime is a major determinant of 

plant community development and patterns in wetlands 

(Spence 1967, Casanova et al. 2000, Heegaard et al. 2001) 

and soil variable gradients are also important in deter-

mining plant community composition (Fitter 1982, Ked-

dy 1984, Nilsson et al. 1989). An optimal environmental 

range of distribution for specific species has been pro-

posed for several hydrophytes (Kwon et al. 2006, Lee et al. 

2007, Yoon et al. 2011). Our study could be a method to 

understand the reason of decrease in population size of 

C. virosa and to seek a management strategy for conser-

vation and restoration of the C. virosa habitat, an endan-

gered plant. 

MATERIAL AND METHOD

Study Site Description

Only four habitats of C. virosa are known in South Ko-

rea, and we studied these four habitats (Table 1). The Ho-

engseong habitat (HS1 and HS2) was located between a 

grazing land and low hills at 520 m a.s.l. The distance be-

tween HS 1 and HS2 was about 700 m. HS1 was a 12 year 
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Fig. 1 Monthly mean temperature and precipitation at Hoengseong (HS), 
Gunsan (GS), and Daegwanryeong (PC) during 2007- 2011 (data from Na-
tional Weather Service 2011) 

Table 1. Study sites (Cicuta virosa habitats)

Habitat name Code       GPS information Altitude
  (a.s.l.)

Population 
size in 2011

                                     Type

Hoengseong HS1
HS2

E128°10′05″  N37°29′28″ 520 m   170
    70

HS1: Abandoned paddy field
HS2: Stream let

Gunsan GS E126°43′12″  N35°55′58″    28 m >500 Reservoir 
(abandoned since 2000)

Daegwan-ryeong PC E128°40′26″  N37°41′10″ 793 m <40 Wet meadow 
(fenced since 2008)

Gangneung DG E128°44′59″  N37°34′20″ 592 m <10 Agricultural waterway 
(fenced since 2007)
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them with a 0.45 µm membrane filter. We also took free 

water samples around the mat near permanent quadrats 

and interstitial mat water by squeezing the mat around C. 

virosa roots at a depth of 0–15 cm in each quadrat at GS. 

Those samples were collected twice before and after in-

undation of the mat on April 30 and June 20, 2012. NO3-N, 

NH4-N, and PO4-P were analyzed by the hydrazine meth-

od (Kamphake et al. 1967), indo-phenol method (Murphy 

and Riley 1962), and ascorbic acid reduction method (Sol-

orzano 1969), respectively. The content of cations such as 

K+, Ca2+, Na+, and Mg2+ was mea sured using an atomic ab-

sorption spectrometer (Model AA240FS; Varian, Palo Alto, 

CA, USA). We used SPSS 19.0 software (SPSS, Inc., Chica-

go, IL, USA), a one-way analysis of variance (ANOVA), and 

Duncan’s post hoc test or a t-test at a 5% significance level 

for analyses.

 

Substrate analyses

Soil was collected once at a depth of 0–10 cm in a 20 × 

20 cm area at each quadrat and fixed locations of major 

accompanying species mono-populations at every study 

site with a soil hand auger, and gravel and organic debris 

were removed. Particularly at GS, the mat around the C. 

virosa roots at a depth of 0–15 cm was collected in April 

and June. The soil and mat were then sealed in plastic 

bags and transported to the laboratory. We passed the 

soil samples through a 2 mm sieve and determined soil 

texture using the hydrometer analysis method and a tex-

ture triangle (Sheldrick and Wang 1993). We measured pH 

and conductivity using a soil solution prepared by mixing 

wet soil and distilled water at a mass ratio of 1:5. The total 

volume of water in wet soil was measured as freshwater 

moisture immediately after passing it through a sieve, and 

the amount of soil particle moisture was measured as air-

dried moisture in air dried soil by oven drying at 105°C for 

≥ 24 hours. Oven dried mat samples were milled to pass 

Vegetation survey

We established nine 1 m × 1 m permanent quadrats at 

HS1, five at HS2, 11 at GS, and three at PC according to C. 

virosa population size and investigated the cover, density, 

and height monthly during growing season in 2011, based 

on a modification of the Braun–Blanquet plant sociologi-

cal method (Mueller-Dombois and Ellenberg 2003, Kim et 

al. 2004). A water gradient from the bank to the floating 

mat was observed at GS, where sizable C. virosa mono-

populations were distributed. To determine the topog-

raphy and the C. virosa community structure covering C. 

virosa mono-populations, we established five fixed line 

transects at representative locations at GS, and investi-

gated vegetation distribution at each transect using the 

line intercept method (Canfield 1941). The 11 quadrats at 

GS were placed on those transects (Fig. 2).

Water environment analyses

We measured water level at each quadrat and fixed 

places comprised of major accompanying species mono-

populations of every study site with a 1 m stick ruler. Water 

level was defined as the distance from substrate surface 

that C. virosa rooted in such as a floating mat or mound 

of plant roots. It was positive when the surface was below 

the water table and negative when the surface was above 

the water table. Water temperature and dissolved oxy gen 

(DO) were measured with a DO meter (model PDO-520; 

UKAS, Taipei, Taiwan). Conductivity (EC) was measured 

with a Corning Checkmate II (model 311; Corning, Low-

ell, MA, USA), and pH was measured with a pH meter 

(model AP 63; Fisher, Pittsburgh, PA, USA) in the field. We 

collected water samples at each quadrat and fixed places 

comprised of major accompanying species mono-pop-

ulations in 125 ml HDPE bottles once every month and 

brought them in a cool box to the laboratory and filtered 

Fig. 2 Location of line transects and quadrats at GS, OW: open water, ZL: Zizania latifolia, CV: Cicuta virosa, PD: Paspalum distichum, Q: Quadrats
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Major accompanying species at GS (Fig. 3c) were Ziza-

nia latifolia (coverage of 0–27.0%) and P. thunbergii (cov-

erage of 0.5–15.5%). C. virosa (coverage of 37.1–92.2%) 

dominated on the mat in May and June, and Z. latifolia 

fell down by heavy rain in July, whereas the C. virosa pop-

ulation located on the floating mat was relatively safe. In 

the case of PC (Fig. 3d), Scirpus radicans (coverage of 51–

96%) dominated a broad area inside the fence, and a few 

C. virosa (coverage of 2–18%) were distributed sparsely. C. 

virosa population size was very small at DG even though 

it has been protected and managed with an artificial wa-

ter supply. S. radicans (coverage of > 90%), dropwort, and 

several C. virosa were found at the DG site in June.

Height and coverage of C. virosa

C. virosa flowered in June at GS, in July at PC and in 

August at HS1, 2. During the blooming season, average 

height was 125 ± 9.6 cm at GS, 126 ± 22 cm at HS1, 128 ± 

21.8 cm at HS2 and 70 ± 7.1 cm at PC (Fig. 4a). HS2, where 

tall P. japonica co-occurred, showed the greatest height. 

Particularly at GS, flowering adults fell down in June 

and juveniles grew up to an average height of 90 cm and 

showed a second growth peak in August. Blooming and 

withering at PC, where temperature was low and altitude 

was high, occurred 1 month earlier than those at HS. A 

few flower stalks were broken in July at PC; thus, we could 

not exactly measure height and coverage. 

through a 1 mm mesh screen (Sasser et al. 1991). Soil and 

mat organic matter contents were analyzed by the loss on 

ignition method (Boyle 2004). NO3-N and NH4-N were ex-

tracted with 2 M KCl solutions (Kim et al. 2004) and mea-

sured using the hydrazine (Kamphake et al. 1967) and in-

dophenol methods (Murphy and Riley 1962), respectively. 

PO4-P was extracted with Bray No. 1 solution (Bray and 

Kurtz 1945) and measured using the ascorbic acid reduc-

tion method (Solorzano 1969). K+, Ca2+, Na+, and Mg2+ 

were extracted with 1 N ammonium acetate solution (Al-

len et al. 1974) and measured using an atomic absorption 

spectrometer. We used a one-way ANOVA and Duncan’s 

post hoc test at the 5% significance level for analyses.

RESULTS

Plant community structure 

Major accompanying species at HS1 (Fig. 3a), were P. 

thunbergii (coverage of 30–60%) and Sium suave (cover-

age of 1–5%). The coverage of P. thunbergii decreased with 

growth of C. virosa (coverage of 33–92%). Major accompa-

nying species at HS2 (Fig. 3b) were Phragmites japonica 

(coverage of 0–36%) and P. thunbergii (coverage of 14–

19%). Relative coverage of C. virosa (coverage of 29–69%) 

after the growing season increased due to wilt of compan-

ion species. 

Fig. 3 Species composition and relative coverage of C. virosa community at HS1 (a), HS2 (b), GS (c) and PC (d), CV: Cicuta virosa, PT: Persicaria thunbergii, 
SR: Scirpus radicans, SS: Sium suave, PJ: Phragmites japonica, ZL: Zizania latifolia, PD: Paspalum distichum, EK: Eleocharis kuroguwai
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higher in spring and fall (dry season) than that in sum-

mer (Fig. 6b). But the EC values at PC (279.0–764.0 μS/cm) 

were far higher than those at other sites. The dissolved 

oxygen concentration in water was highest at HS2 in lotic 

water with a mean value of 5.7 mg/kg (Fig. 6c). In contrast, 

water temperature was lowest at HS2, and its year-round 

range was narrow. The highest water temperature was re-

corded at GS with low DO values (Fig. 6d). 

The NO3-N, NH4-N, and PO4-P contents were low at 

HS throughout the entire growing season (Fig. 6e–g). The 

seasonal pattern of change in NO3-N, NH4-N, and PO4-P 

contents at GS was different from that at the other sites. 

K+ and Na+ concentrations were highest at GS with wide 

seasonal variations (Fig. 6h, i). But, the concentration of 

divalent cations at PC was excessively high such as the EC 

values (Fig. 6j, k). NO3-N, NH4-N, and PO4-P contents at 

DG were similar to the levels at GS, and cation concentra-

tions and EC values at DG were similar to those at HS in 

June. Water environmental properties at the major com-

panion species mono-populations were within the C. vi-

rosa population range at each site except water level.  

Coverage increased with growth and decreased af-

ter flowering (Fig. 4b). GS, where the climate was mild, 

showed earlier shoot sprouting than that of other species, 

so coverage in spring was up to 90%.

Water environment characteristics 

Seasonal changes and a significant difference among 

habitats in water level from substrate C.virosa rooted in 

were observed except in May (Fig. 5a) because of a high 

volume inflow at GS in June and heavy rain at HS in sum-

mer. We could not measure water level or collect water 

samples at PC in May and June due to the low subsurface 

water level. The water level at the C. virosa population was 

significantly different from that at the major companion 

species mono-population sites (P. thunbergii at HS1, P. ja-

ponica at HS2, and Z. latifolia at GS) in each habitat (Fig. 

5b).

The water in all habitats was neutral or slightly acidic 

and mean pH was very similar (Fig. 6a). The EC range at 

HS1, 2 and GS was very wide from 23.4 to 250.0 μS/cm and 

0

30

60

90

120

150

Apr* May Jun Jul Aug Sep Oct

H
ei

gh
t (

cm
)

0

20

40

60

80

100

May Jun Jul Aug Sep Oct

Co
vr

ag
e 

(%
) 

GS
HS1
HS2
PC

Fig. 4 Monthly change of height (a) and coverage (b) of C. virosa (Apr*: pilot survey result) Vertical bars indicate ± SE 

a b

a b

Fig. 5 Seasonal change in water level at HS1, 2, GS and PC (a) (no data at PC in May and June due to low subsurface water level) and comparison of water 
level at C. virosa quadrats and mono-populations of major companion species at each site during growing season (b) (HS1: P. thunbergii n = 55, HS2: P. ja-
ponica n= 83, GS: Z. latifolia n= 68) Letters on the graphs mean significant difference at the 5% level based on Duncan’s test. Meaningful t-test results at the 
5% level are marked with *. Vertical bars indicate ± SE
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Fig. 6 Seasonal change in water environment characteristics at C. virosa habitats during the growing season in 2011. Letters on the graphs indicate signifi-
cant difference at the 5% level based on Duncan’s test. HS1: n= 9, HS2: n=5, GS: n=7, PC: n=3 (no samples in May and June due to low subsurface water level)
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Table 2. Means and ranges of soil environmental properties at C. virosa habitats in June

HS1 HS2 GS PC DG

Soil  factor mean (range) mean (range) mean (range) mean (range)

Fresh moisture (%) 44.5a (34.8~59.7)   37.9a (35.7~40.1) 66.7b (57.3~70.9) 36.9a (30.3~44.4) 41.6

Air-dried moisture (%)          11.2a (2.0~30.6)            1.6a (1.2~2.0)           11.8a (2.9~25.5) 6.0a (2.1~10.5)   8.0

LOI (%)          7.3a (4.4~11.6)            4.1a (3.6~4.5)           14.3b (7.7~20.2)             5.9a (3.4~8.5)   5.8

pH          4.9a (4.3~5.2)            4.6a (4.6~4.7)             4.4a (3.4~4.8)             4.9a (4.4~5.7)   5.8

EC (µS/cm)  34.0a (16.0~86.7)   29.2a (25.1~33.2)         246.7a (97.7~755.0) 102.6a (87.7~123.9) 13.3

NO3-N (mg/kg)         4.3ab (2.9~7.1)            3.2a (2.4~3.9)             6.5b (3.7~9.1)             2.9a (0.7~6.1)   2.8

NH4-N (mg/kg)         13.8ab (4.7~22.3)  11.5a (5.0~18.0)           32.5b (5.1~53.9)             9.8a (1.8~23.4) 12.3

PO4-P (mg/kg)  31.3a (13.5~48.1)  12.5a (9.2~15.7)           22.3a (4.7~40.3)           13.8a (4.0~21.0) 59.9

K+ (mg/kg)  104.0ab (61.6~185.2)   45.1a (40.3~49.9)   162.7b (101.4~224.5)           70.1a (37.4~130.1) 66.0

Ca2+ (mg/kg)         43.1ab (28.0~71.6)   28.3a (22.2~34.5) 102.4c (71.4~119.7)           60.7b (52.9~74.7) 46.2

Na+ (mg/kg)        837.5a (517.9~1358.9)      517.2a (484.5~549.9)   1219.8a (898.5~1553.5)   12369.1b (609.7~18296.8)      902.7

Mg2+ (mg/kg)  131.1ab (72.0~236.9)   50.2a (46.1~54.3)   286.3c (230.6~337.3)  168.8b (51.8~235.1)       111.2

Sand (%) 39.4a (12.6~52.2)   77.8b (75.1~80.4) 50.7a (38.6~66.6)         60.8ab (45.1~70.0) 11.0

Silt (%)  51.7c(39.5~72.1)   21.0a (17.7~24.2)         43.0bc (27.5~56.6)         32.3ab (25.1~43.6) 73.3

Clay (%)          8.9b (5.9~15.3)            1.3a (0.6~1.9)             6.3b (4.5~8.7) 6.9b (4.5~11.2) 15.6

Letters on the table indicate significant difference at the 5% level based on Duncan’s test. HS1 n=9, HS2 n=2, GS n= 7, PC n=3, DG n=1.
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inaccessible region that was deeper than 1 m, whereas Z. 

latifolia did not. There was loose and sunken mat on the 

fifth line; hence, water-hemlock was distributed only in 

the shallow water region near the bank. 

Organic matter content of the mat, as a C. virosa sub-

strate at GS, was 86.8 ± 9.2% under a non-flooded con-

dition on April 30 and 77.9 ± 5.1% under inundation on 

June 20. Interstitial mat water had a significantly higher 

EC value and concentrations of NO3-N, NH4-N, PO4-P, 

K+, Na+, Ca2+, and Mg2+ than free water around the mat. 

All values in June were higher than those in April except 

NO3-N content (Table 3). NO3-N content was highest in 

the interstitial mat water in April. pH values were slightly 

lower in interstitial mat water, but the difference was not 

significant. 

DISCUSSION

Chemical characteristics of Cicuta virosa habitat 
environment 

Based on the water chemistry of some typical natural 

wetlands (Kadlec and Knight 1996), water chemical prop-

erties in C. virosa habitats were general level except two 

factors. First, the range and seasonal change of NH4-N 

Soil characteristics

The common soil textures were silty loam and sandy 

loam. Soil was mostly sandy at HS2 and mostly silty at 

HS1 (Table 2). Average fresh moisture and air-dried mois-

ture contents were 50.2 ± 13.9% and 10.7 ± 8.5%, respec-

tively. Fresh moisture content was significantly higher at 

GS than that at the other sites. The soil was acidic with 

a mean pH of 4.7. Organic matter content, EC, and PO4-

P concentration were similar at the four sites. However, 

soil at DG was less acidic and had a lower EC value and 

higher PO4-P concentrations than those at the other sites. 

Concentrations of NO3-N, NH4-N, K+, Ca2+ and Mg2+ at GS 

were significantly higher than those at the other sites, but 

the concentration of Na+ at PC was ten times higher than 

that at GS. Soil properties at major companion species 

mono-populations were within the C. virosa population 

range at each site.  

A distinct habitat at Gunsan 

Because GS is a deep reservoir and C. virosa was grow-

ing on floating mats, we made additional water depth pro-

files at intervals of 1 m on line transects from a start point 

near the bank to 1 m of water depth (Fig. 7). C. virosa was 

mainly distributed on the floating mat and extended to an 

Fig. 7 Water depth and distribution of dominant plants profiles on five lines transects in GS reservoir in September. Horizontal axis is distance (meter) 
from start point near the bank. Vertical axis is distance (cm) from water surface to soil and mat surface. For lines location, see Fig. 2. Dots indicate distribu-
tion of ZL and CV on the line. ZL: Z. latifolia, CV: C. virosa, SS: soil surface, MS: above border of mat, MT: mat thickness (below border of floating mat)

D
is

ta
nc

e 
fr

om
 w

at
er

 s
ur

fa
ce

 to
 m

at
rix

 (c
m

) 
 Distance from starting point near bank (m) 

-20

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19

 
line1
 

-20

0

20

40

60

80

100

1 3 5 7 9 11 13 15

ZL

CV

DS

DM

MT

line2

-20

0

20

40

60

80

100

1 3 5 7 9 11 13 15

line3

-20

0

20

40

60

80

100

1 3 5 7 9 11 13 15

line4

-20

0

20

40

60

80

100

1 3 5 7 9 11

line5



J. Ecol. Environ. 36(1): 19-29, 2013

http://dx.doi.org/10.5141/ecoenv.2013.003 26

Water level as a factor determining C. virosa 
distribution 

The distribution of adult wetland plants can be deter-

mined by a single environmental gradient such as water 

depth (Spence 1982, Coops et al. 2004, Lee et al. 2005), be-

cause changes in water depth are associated with changes 

in a variety of environmental factors (e.g., light, soil nutri-

ents, soil particle size, gas exchange rates) that physiologi-

cally constrain species distribution (Spence 1982, Keddy 

1983). In addition, each species can be expected to have 

its own water depth tolerance (Spence 1967, Seabloom 

et al. 1998) and plant communities are more likely to re-

spond to the history of water level than the water level at a 

particular time of a survey (Roberts 1994, Tabacchi 1995). 

This means that water level and competitive interactions 

with accompanying species under seasonal changes in 

water depth are important factors for the distribution and 

population size of hydrophytes. 

We determined that there were meaningful differences 

between water levels of C. virosa populations and major 

accompanying species mono-populations (P. thunbergii 

at HS1, P. japonica at HS2, Z. latifolia at GS) (Fig. 5b). A 

mound shaped surface that was modified by P. japonica 

may change its micro-environment and affect reproduc-

tive success of other species (Byun et al. 2008, Hong et 

al. 2012). The P. japonica hummock offered a low water 

level for C. virosa at HS2, which consisted of a 30 cm deep 

streamlet. Floating mats rise and fall with changes in lo-

cal water level and support stands of emergent vascular 

vegetation (Sasser et al. 1991). Mat made of live and dead 

roots and non-decomposing parts of plants like P. disti-

chum and Z. latifolia provided shallow water level at GS, 

a 1m depth reservoir and shelter from strong competi-

tion with a prolific accompanying species, Z. latifolia and 

and PO4-P contents at GS were abnormal. This may have 

resulted from stream-flow input from a surrounding rice 

field and a rubbish heap and mat decomposition under 

high temperature. Second, concentration of divalent cat-

ions at PC also deviated from typical value. PC area in-

cluded a pasture near a road and received a great amount 

of snowfall every winter. CaCl2 salt could have caused the 

high Ca2+ content in water at PC. 

Soil was a little acidic and similar at four habitats ex-

cept at DG. C. virosa primarily lives on grey-wooded and 

podzolic soils with peat in northern Canada (Mulligan 

and Munro 1980). Our results support these observations, 

but an evaluation of the effect of the excessive Na+ con-

centration in soil and the high Ca2+ content in water at PC 

to C. virosa distribution is needed additionally.

In mat system of GS, almost all ion concentrations in 

the interstitial mat water were higher than those in the 

free surface water in July than those in April. But, NO3-N 

content was higher in April under the non-flooded con-

dition than that in July, because the redox potential de-

creased under the flooded condition (Haraguchi 1991). 

Water chemistry and redox potential of a floating mat is 

affected by water regime (Haraguchi 2004).  

Synthetically, total distribution ranges of water and soil 

chemical environment for C. virosa were wide and over-

lapped with the optimal environmental range of distri-

bution for typical hydrophytes such as Z. latifolia, Typha 

augustifolia (Kwonet al. 2006), Scirpus tabernaemontani 

(Lee et al. 2007), and Juncus effuses (Yoon et al. 2011). Wa-

ter and soil chemical properties at C. virosa population 

were not different from those at major companion spe-

cies mono-populations at each site. 

Table 3. Water properties of free water around mat and interstitial mat water at GS

Factor
Non-flooded Flooded

 Free (n=6) Interstitial (n=6) Free (n=6) Interstitial (n=6)

pH   7.2 ± 0.07a   6.7 ± 1.20a              6.7 ± 0.28a   6.5 ± 0.71a

EC (µS/cm)            123.6 ± 8.52a   390.5 ± 187.59a         356.2 ± 8.04a   958.8 ± 569.73b

NO3-N (mg/l) 0.03 ± 0.01a 0.25 ± 0.16b            0.07 ± 0.16a 0.08 ± 0.07a

NH4-N (mg/l) 0.02 ± 0.03a 2.25 ± 1.65a            0.08 ± 0.10a  14.98 ± 16.62b

PO4-P (mg/l) 0.08 ± 0.04a 1.88 ± 2.11a            0.06 ± 0.06a  4.72 ± 5.20b 

K+ (mg/l) 6.14 ± 2.06a 35.79 ± 18.18b            6.14 ± 1.78a  35.57 ± 36.15b

Ca2+ (mg/l) 7.33 ± 0.99a  37.86 ± 24.82bc         15.67 ± 1.40ab 49.30 ± 31.18c

Na+ (mg/l)             13.42 ± 0.54a       25.96 ± 9.47ab         25.40 ± 5.90ab  38.83 ± 19.81b

Mg2+ (mg/l) 2.65 ± 0.23a       11.44 ± 7.42ab            4.46 ± 1.03a  15.18 ± 13.07b

Water Samples were collected in non-flooded condition on April 30 and in flooded condition on June 20, 2012 at GS.  Letters on the table indicate signifi-
cant difference at the 5% level based on Duncan’s test. 



Comparison of environmental characteristics at Cicuta virosa

27 http://www.jecoenv.org

disturbance by flooding in summer. Water depth for the 

distribution of adult C. virosa was defined as 7 ± 3.5 cm, 

which was the mean water depth value at three habitats 

(HS1, HS2, and GS) through the entire growing season. 

A study reported that C. virosa lives on sand in 0–20 cm 

water levels with light over 12,000 lux on Mt. Baekdu in 

China (Kim and Lee 2003).

The abundance of C. virosa within its native range has 

been diminished where water courses and marshes have 

been diverted, filled, or drained (Mulligan and Munro 

1980, this study). Vegetation studies have often revealed 

significant declines in area and/or species richness of 

shore vegetation after water regime alterations (Nilsson 

and Keddy 1988, Shay et al. 1999, Nishihiro et al. 2004, this 

study). In Japan, the major reason for the extinction of 

wild plants and decreases in their number is exploitation 

of wetlands (Jeon 1999). The population size of C. virosa 

was diminished at PC and DG where the water regime was 

changed due to fragmentation by road construction and 

isolation by a protection fence. There was a water short-

age in May and June at PC and a need for an artificial wa-

ter supply from the near mountain at DG. Monthly water 

levels from substrate C.virosa rooted in changed and were 

significantly different at the four sites because of differ-

ent water regime. But, water levels in May were not differ-

ent among habitats where C. virosa population sizes were 

large, and average water level was 7.2 ± 2.4 cm (Fig. 5a). 

The spring season is a very important period for regenera-

tion and distribution of C. virosa considering its life his-

tory (Fig. 4). C. virosa sprouted earlier than other plants 

and flowered in July at PC. 

Dispersal strategy of water hemlock is floating and 

spreading through water flooding in spring (Mulligan and 

Munro 1980, Panter et al. 1988); hence, sufficient water 

level could be a factor determining C. virosa distribu-

tion. Water hemlock forms overwintering rootstocks from 

buds around the base of the current year’s rootstock in the 

fall. These may keep the plant afloat and serve to spread 

plants during spring flooding. The seeds, which are sur-

rounded by a spongy fruit coat, are also buoyant (Mulli-

gan and Munro 1980). 

As a result, proper water level is a very important fac-

tor determining C. virosa distribution and dispersal, and 

the low water level in spring was considered a reason that 

the C. virosa population has decreased at PC and DG. We 

could propose connecting with corridor that C. virosa 

could use to disperse through and maintaining a high wa-

ter level to preserve and restore C. virosa habitats. Here, 

the GS habitat could be a good model for C. virosa conser-

vation in a warm temperate region. 

CONCLUSION 

C. virosa habitats were distinguished by comparison 

based on climate, wetland type, community structure, 

water and substrate properties and water regime. HS1 

had a 0–5 cm water depth abandoned rice field in high 

montane areas with emerging P. thunbergii, and its ion 

concentrations and EC were in the midrange and relative-

ly constant. HS2 had a 10–15 cm water depth streamlet 

in high montane areas with P. japonica and its ion con-

centrations and EC were relatively poor and constant. GS 

was 0–10 cm water depth (to mat surface) a deep reser-

voir where floating mat developed at low altitudes and in 

a warm area. The main companion species was Z. latifolia 

and its ion concentrations and EC were relatively rich and 

seasonally highly variable. PC was dominated by S. radi-

cans and has excessive high EC value in water and high 

Na+ contents in soil with the low water level in spring in 

high montane area. 

The total distribution ranges of the water and soil 

chemical environments for C. virosa were wide and over-

lapped with the optimal environmental range of distri-

bution for accompanying species. However, the optimal 

water level range for C. virosa distribution and dispersal 

could be defined. This optimum water level was adjusted 

by substrate structure such as a mound of P. japonica and 

a floating mat comprised of accompanying species. A 

floating mat at GS was an aid to maintain an optimal and 

stable water level in deep or fluctuating water and to pre-

vent strong competition with prolific macrophytes. The 

GS, which had floating mats, could be a good model for C. 

virosa conservation in a warm temperate region, whereas 

the PC, which experienced a water shortage in spring, 

provided a clue about the decline in C. virosa population 

size.
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