DOI QR코드

DOI QR Code

Distribution and Origin of the Mid-depth Cold Water Pools Observed in the Jeju Strait in the Summer of 2019

2019년 여름철 제주해협에서 관측된 중층 저온수의 분포와 기원

  • DOHYEOP YOO (Department of Oceanography, Chonnam National University) ;
  • JONG-KYU KIM (Research Institute for Basic Science, Chonnam National University) ;
  • BYOUNG-JU CHOI (Department of Oceanography, Chonnam National University)
  • 유도협 (전남대학교 해양학과) ;
  • 김종규 (전남대학교 기초과학연구소) ;
  • 최병주 (전남대학교 해양학과)
  • Received : 2023.01.09
  • Accepted : 2023.02.21
  • Published : 2023.02.28

Abstract

To investigate the role of water masses in the Jeju Strait in summer on the shallow coastal region and the characteristics of water properties in the strait, temperature and salinity were observed across the Jeju Strait in June, July, and August 2019. The cold water pool, whose temperature is lower than 15℃, was observed in the mid-depths of the central Jeju Strait and on the northern bottom slope of the strait. The cold water pools have the lowest temperature in the strait. To identify water masses comprising the cold water pool in the Jeju Strait, mixing ratios of water masses were calculated. The mid-depth cold water pool of the Jeju Strait consists of 54% of the Kuroshio Subsurface Water (KSSW) and 33% of the Yellow Sea Bottom Cold Water (YSBCW). Although the cold water pool is dominantly affected by the KSSW, the YSBCW plays a major role to make the cold water pool maintain the lowest temperature in the Jeju Strait. To find origin of the cold water pool, temperature and salinity data from the Yellow Sea, East China Sea, and Korea Strait in the summer of 2019 were analyzed. The cold water pool was generated along the thermohaline frontal zone between the KSSW and YSBCW in the East China Sea where intrusion and mixing of water masses are active below the seasonal thermocline. The cold water in the thermohaline frontal zone had similar mixing ratio to the cold water pool in the Jeju Strait and it advected toward the Korea Strait and shallow coastal region off the south coast of Korea. Intrusion of the mid-depth cold water pool made temperature inversion in the Jeju Strait and affected sea surface temperature variations at the coastal region off the south coast of Korea.

여름철 제주해협 물성 분포의 특성과 제주해협 수괴가 연안에 미치는 영향을 확인하기 위하여 2019년 6월, 7월, 8월에 완도와 제주도 사이에서 수온과 염분을 관측하였다. 여름철 계절 수온약층 아래에서 15℃의 저온수가 관측되었으며, 이 저온수는 관측시기에 따라 다르지만 수심이 깊은 제주해협 남쪽 골보다는 주로 제주해협 중앙의 중층과 북쪽 사면에 분포하였다. 이 저온수를 구성하는 근원 수괴를 알아보기 위하여 제주해협에서 관측된 해수를 구성하는 주변 근원 수괴들의 혼합비(mixing ratio)를 계산하였다. 여름철 제주해협 중앙 중층과 북쪽 사면에 나타나는 저온수는 평균적으로 쿠로시오 아표층수가 54% 그리고 황해저층냉수가 33% 비율로 혼합된 해수였다. 이 중층 저온수는 제주해협 전 수층에서 가장 낮은 수온을 갖는 해수임에도 상대적으로 고온고염인 쿠로시오아표층수가 큰 구성비율을 갖고 있다. 중층 저온수가 제주해협에서 가장 낮은 수온의 분포를 갖게 된 이유는 다른 제주해협 해수에 비해 황해저층냉수의 기여도가 높기 때문이다. 제주해협 중층 저온수의 기원을 살펴보기 위하여 황해, 동중국해, 대한해협에서 2019년 여름철에 관측한 광역 수온과 염분 자료를 분석하였다. 제주도 남서쪽 동중국해 계절 수온약층 아래에서 쿠로시오 기원의 해수와 황해저층냉수가 열염전선을 형성하였고, 이 열염전선을 가로지르는 수괴의 관입에 의해 해수의 혼합이 발생하였다. 동중국해에서 형성된 이 혼합수는 제주해협에서 관측된 중층 저온수와 거의 같은 혼합비율을 가졌다. 이런 결과들을 종합하였을 때 제주해협에서 여름철에 관측된 중층 저온수는 동중국해에서 쿠로시오 아표층수와 황해저층냉수의 혼합으로 만들어진 저온수가 해류를 따라 이동한 것이다. 제주해협 중앙과 북쪽 사면으로 이동한 중층 저온수는 제주해협 중앙의 중층에서 수온역전을 만들고, 한국 남해안 연안의 표층 수온 변동에도 큰 영향을 미친다.

Keywords

Acknowledgement

황해, 동중국해, 대한해협에서 장기간 정기적으로 수온과 염분을 관측하여 연구에 사용할 수 있도록 자료를 제공해주신 국립수산과학원과 국립해양조사원 관계자분들께 감사드립니다. 이 논문은 전남대학교 학술연구비(과제번호: 2018-3521) 지원에 의하여 연구되었습니다. 또한 이 연구는 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2016R1A6A1A03012647)의 일부입니다.

References

  1. Beardsley, R.C., R. Limeburner, H. Yu and G.A. Cannon, 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont. Shelf Res., 4: 57-76. https://doi.org/10.1016/0278-4343(85)90022-6
  2. Chang, K.I., M.S. Suk, I.C. Pang and W.J. Teague, 2000. Observations of the Cheju Current. J. Oceanog. Soc. Korea, 35: 129-152.
  3. Che, H. and J. Zhang, 2018. Water mass analysis and end-member mixing contribution using coupled radiogenic Nd isotopes and Nd concentrations: interaction between marginal seas and the northwestern Pacific. Geophys. Res. Lett., 45(5): 2388-2395. https://doi.org/10.1002/2017gl076978
  4. Chen, C.T.A., R. Ruo, S.C. Paid, C.T. Liu and G.T.F. Wong, 1995. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Continental Shelf Research, 15(1): 19-39. https://doi.org/10.1016/0278-4343(93)E0001-O
  5. Cho, Y.K. and K. Kim, 1994. Characteristics and origin of the cold water in the South Sea of Korea in summer. J. Korean Soc. Oceanogr., 29(4): 414-421.
  6. Guan, B.-X., 1994. Patterns and structures of the currents in Bohai, Huanghai and East China Seas. In: Oceanology of China Seas, edited by Zhou, D., Y.B. Liang and C.K. Zeng, Kluwer Acad., Norwell, Mass., pp. 17-26.
  7. Hareesh Kumar, P.V., B. Mathew, M.R. Ramesh Kumar, A. Raghunadha Rao, P.S.V. Jagadeesh, K.G. Radhakrishnan and T.N. Shyni, 2013. 'Thermohaline front' off the east coast of India and its generating mechanism. Ocean Dyn., 63: 1175-1180. https://doi.org/10.1007/s10236-013-0652-y
  8. Houghton, R.W. and J. Marra, 1983. Physical/biological structure and exchange across the thermohaline shelf/slope front in the New York Bight. J. Geophys. Res., 88: 4467-4481. https://doi.org/10.1029/JC088iC07p04467
  9. Hur, H.B., G.A. Jacobs and W.J. Teague, 1999. Monthly variations of water masses in the Yellow and East China Seas, November 6, 1998. J. Oceanogr., 55(2): 171-184. https://doi.org/10.1023/A:1007885828278
  10. Isobe, A., 1999. On the origin of the Tsushima Warm Current and its seasonality. Cont. Shelf Res., 19: 117-133. https://doi.org/10.1016/S0278-4343(98)00065-X
  11. Joyce, T.M., 1977. A note on the lateral mixing of water masses. J. Phys. Oceanogr., 7: 626-629. https://doi.org/10.1175/1520-0485(1977)007<0626:ANOTLM>2.0.CO;2
  12. Jung, J.H. and Y.K. Cho, 2020. Persistence of coastal upwelling after a plunge in upwelling favorable wind. Sci. Rep., 10: 11938.
  13. Kang, S.Y. and J.H. Moon, 2022. Distribution of Water Masses and Characteristics of Temperature Inversion in the Western Seas of Jeju Island in Spring. Ocean Polar Res., 44(3): 191-207. https://doi.org/10.4217/OPR.2022018
  14. Kim, J.K., B.J. Choi, J.K. Kim and Y.J. Sun, 2022. Wind-driven retreat of cold water pool and abrupt sea temperature rise off the southwest coast of Korea in summer 2017. J. Mar. Syst., 231(2022): 103739.
  15. Kim, K.H. and J.H. Han, 2000. Origin and mixing ratio of water masses in the East China Sea, the South Sea and the Korea Strait using Radium isotopes and salinity. J. Kor. Soc. Oceanogr., 5: 216-223.
  16. Kim, S.H., 2020. Characteristics of Water Temperature Inversion Observed in a Region West of Jeju Island in April 2015. Ocean Polar Res., 42(2): 97-113.
  17. Kim, S.H., B.K. Choi and E. Kim, 2020. Study on the Behavior of the Water Temperature Inversion Layer in the Northern East China Sea. J. Mar. Sci. Eng., 8(3): 157.
  18. Kondo, M., 1985. Oceanographic investigations of fishing grounds in the East China Sea and the Yellow Sea- I. Characteristics of the mean temperature and salinity distributions measured at 50 m and near the bottom. Bulletin of the Seikai Regional Fisheries Research Laboratory, 62: 19-66 (in Japanese, with English Abstr.).
  19. Lee, J.H., I.C. Pang and J.H. Moon, 2016. Contribution of the Yellow Sea Bottom Cold water to the abnormal cooling of sea surface temperature in the summer of 2011. J. Geophys. Res., 121(6): 3777-3789. https://doi.org/10.1002/2016JC011658
  20. Lee, S.H. and R.C. Beardsley, 1999. Influence of stratification on residual tidal currents in the Yellow Sea. J. Geophys. Res., 104(C7): 15679-15701. https://doi.org/10.1029/1999JC900108
  21. Lie, H.J. and C.H. Cho, 2002. Recent advances in understanding the circulation and hydrography of the East China Sea. Fish. Oceanogr., 11: 318-328. https://doi.org/10.1046/j.1365-2419.2002.00215.x
  22. Lie, H.J. and C.H. Cho, 2016. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrography observations. Prog. Oceanogr., 146(2016): 121-141. https://doi.org/10.1016/j.pocean.2016.06.004
  23. Lie, H.J., 1984. A note on water masses and general circulation in the Yellow Sea (Hwanghae). J. Oceanol. Soc. Korea, 19(2): 187-194.
  24. Lie, H.J., 1989. Tidal fronts in the southeastern Hwanghae (Yellow Sea). Cont. Shelf Res., 9(6): 527-546.  https://doi.org/10.1016/0278-4343(89)90019-8
  25. Lie, H.J., C.H. Cho and K.T. Jung, 2015. Occurrence of large temperature inversion in the thermohaline frontal zone at the Yellow Sea entrance in winter and its relation to advection. J. Geophys. Res., 120(1): 417-435. https://doi.org/10.1002/2014jc010653
  26. Lie, H.J., C.H. Cho, J.H. Lee, S. Lee and Y. Tang, 2000. Seasonal variation of the Cheju Warm Current in the Northern East China Sea. J. Oceanogr., 56: 197-211. https://doi.org/10.1023/A:1011139313988
  27. Miller, A.R., 1950. A study of mixing processes over the edge of the continental shelf. J. Mar. Res., 9(2): 145-160.
  28. Moon, J.H., N. Hirose and J.H. Yoon, 2009. Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea. J. Geophys. Res., 114: C08016.
  29. Moon, J.H., T.K. Kim, Y.B. Son, J.S. Hong, J.H. Lee, P.H. Chang and S.K. Kim, 2019. Contribution of low-salinity water to sea surface warming of the East China Sea in the summer of 2016. Prog. Oceanogr., 175(2019): 68-80. https://doi.org/10.1016/j.pocean.2019.03.012
  30. Nitani, H., 1972. Beginning of the Kuroshio. In: Kuroshio: Physical Aspects of the Japan Current, edited by Stommel, H. and K. Yoshida (Eds), Kuroshio. Univ. of Tokyo Press, Tokyo, pp. 353-369.
  31. Oliver, H., W.G. Zhang, W.O. Smith, P. Alatalo, P.D. Chappell, A.J. Hirzel, C.R. Selden, H.M. Sosik, R.H.R. Stanley, Y. Zhu and D.J. McGillicuddy, 2021. Diatom hot spots driven by western boundary current instability. Geophysical Research Letters, 48: e2020GL091943.
  32. Pang, I.C. and K.H. Hyun, 1998. Seasonal variation of water mass distributions in the eastern Yellow Sea and the Yellow Sea warm current. J. Oceanol. Soc. Korea, 33: 41-52.
  33. Pang, I.C. and K.H. Oh, 2000. A Seasonal Circulation in the East China Sea and the Yellow Sea and its Possible Cause. J. Kor. Soc. Oceanogr., 35(4): 161-169.
  34. Pang, I.C., C.S. Hong, K.I. Chang, J.C. Lee and J.T. Kim, 2003. Monthly variation of water mass distribution and current in the Cheju Strait. J. Kor. Soc. Oceanogr., 38(3): 87-100.
  35. Rho, H.K. and K. Kim, 1983. Variations of sea surface temperature between Jeju and Mogpo and between Jeju and Wando. J. Kor. Soc. Oceanogr., 18: 64-72.
  36. Ruddick, B. and K. Richards, 2003. Oceanic thermohaline intrusions: observations. Prog. Oceanogr. 56(3-4): 499-527. https://doi.org/10.1016/S0079-6611(03)00028-4
  37. Shin, C.W., H.S. Min, S. Lee, H.-W. Kang, B. Ku, D.G. Kim, J. Park, S. Kwon and B.-J. Choi, 2022. Current Structure and Volume Transport in the Jeju Strait Observed for a Year with Multiple ADCP Moorings. Ocean Sci. J., 57: 365-380. https://doi.org/10.1007/s12601-022-00079-7
  38. Su, Y.S. and X.C. Weng, 1994. Water Masses in China Seas. In: Oceanology of China Seas, edited by Zhou, D., Y.B. Liang and C.K. Zeng, Kluwer Acad., Norwell, Mass., pp. 3-16.
  39. Tomczak, M., 1999. Some historical, theoretical and applied aspects of quantitative water mass analysis. J. Mar. Res., 57: 275-303. https://doi.org/10.1357/002224099321618227
  40. Turner, J.S., 1978. Double-diffusive intrusions into a density gradient. J. Geophys. Res., 83: 2887-2901. https://doi.org/10.1029/JC083iC06p02887
  41. Wang, B., N. Hirose, B. Kang and K. Takayama, 2014. Seasonal migration of the Yellow Sea Bottom Cold Water. J. Geophys. Res., 119: 4430-4443. https://doi.org/10.1002/2014JC009873
  42. Yang, H.W., Y.K. Cho, G.H. Seo, S.H. You, J.W. Seo, 2014. Interannual variation of the southern limit in the Yellow Sea Bottom Cold Water and its causes. J. Mar. Syst., 139(2014): 119-127. https://doi.org/10.1016/j.jmarsys.2014.05.007
  43. Zhou, P., X. Song, Y. Yuan, X. Cao, W. Wang, L. Chi and Z. Yu, 2018. Water mass analysis of the East China Sea and interannual variation of Kuroshio subsurface water intrusion through an optimum multiparameter method. J. Geophys. Res. Oceans, 123(5): 3723-3738.  https://doi.org/10.1029/2018JC013882