• Title/Summary/Keyword: Water Glass

Search Result 1,098, Processing Time 0.024 seconds

The Prevention Effect of Seawater Penetration of Gel Coat Applied in Repair of FRP Fishing Vessel (FRP 어선 보수에 적용되는 겔코트의 해수 침투 방지 효과)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • Ships may collide with reefs or other objects during operation, when arriving or departing ports. The hull plate may be damaged due to the contact with other ships. The total number of domestic powered fishing vessels has decreased, but that of FRP fishing vessels has increased by 0.7% and the ratio of FRP fishing vessels to the total fishing vessels increased to 96%. Recently, fishing vessels has been used as fishing boats for income of non-fishermen as well as fishermen. Therefore, safety management for repair and maintenance is necessary. The penetration of moisture and moisture in the composite material such as FRP may deteriorate the mechanical properties and the salt (NaCl) component of the damaged portion may cause a relatively high deterioration in material strength. The gel coat painting is the final stage of repairs ans maintenance of FRP fishing vessels. The thickness criteria in the domestic and foreign gel coat is 0.3~0.762 mm. The joint specimens, which was immersed in seawater for 120 days, were compared with those without seawater immersion. As a result, the tensile strength was 83 ~ 121.8% and the flexural strength was 83 ~ 113% compared with the specimens without seawater immersion. According to the previous study the tensile strength decreased by more than 29% and the flexural strength decreased by more than 50% when the composite material was immersed in seawater for 1,083 hours without coating. As a result, it was found that the gel coat with 0.5 mm thickness is very effective in preventing the strength decrease of the composite material.

Strength Development Mechanism of Inorganic Injection Material (무기질계 주입재의 강도발현 메커니즘)

  • Han, yunsu;Lee, Jonghwi;Kang, Hyoungnam;Baeg, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.5-12
    • /
    • 2011
  • Recently, NDS(Natural and Durable Stabilizer)method and other similar methods are composed of inorganic accelerating agent and the ultra-super fine cement have been studied as the ground improvement material in Korea. However, in the existing research, the chemical changing process of NDS in the strength development mechanism with the elapsed curing time and the principles of strength development did not give an explanation. For the popularization of the inorganic grout material, it determined that the mechanism verifying of the curing process had to be clearly preceded. Therefore, unconfined compression test, SEM and XRD analysis were performed by the elapsed curing time and were analyzed. In addition, the same trial for SGR method, that is the representative example of the water glass grout material, was selected as comparative target in order to distinguish properties of NDS more clearly. The result of experiment, the strength development mechanism of NDS could be investigated through the close correlation of the unconfined compression strength - SEM - XRD analysis, and excellence of a performance was confirmed.

A Study on the Changes in Mechanical Properties by the Hydration of Polymer Electrolyte Membrane (고분자전해질막의 수화에 의한 기계적 특성의 변화 연구)

  • EO, JUNWOO;JUNG, YOUNGGUAN;SEO, YOUNGJIN;LEE, DONGBAE;HWANG, CHULMIN;KIM, SEUNGHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, as one part of the studies on the mechanical properties of the polymer electrolyte membrane, a study was conducted on the change in the mechanical properties due to hydration before and after aging of the polymer electrolyte membrane. The mechanical properties of the polymer electrolyte membrane changes due to hydration were confirmed through tensile tests of hydrated and non-hydrated Nafion 117. As results of this study, non-hydrated membrane showed higher mechanical properties than hydrated thing in the elastic region and some plastic regions. But, it was confirmed that hydrated membrane exhibited higher mechanical properties than non-hydrated thing in the large plastic region. Hydrated membrane has a lower glass transition temperature than non-hydrated thing due to the role of water as a plasticizer. In addition, the number of ion aggregates decreases, but the size increases, and the hydrated Nafion 117 is thought to have different mechanical properties from that of the non-hydrated thing due to the characteristic that the internal attraction is strengthened.

Experimental Study on the Development of Electromagnetic Pulse Shielding Inorganic Paint Using Carbon Materials (탄소 재료를 사용한 전자파 차폐 무기계 도료 개발에 관한 실험적 연구)

  • Kyong-Pil Jang;Tae-Hyeob Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.234-243
    • /
    • 2023
  • The electromagnetic pulse(EMP) is a general term for high-output electromagnetic waves, and is classified into EMP generated from nuclear weapons, non-nuclear EMP, and EMP generated by natural phenomena. Electromagnetic pulses are means that can cause fatal damage to all electronic devices with electromagnetic elements, such as communication devices, mobile phones, computers, TVs, and means of transportation. In this study, the electromagnetic pulse(EMP) shielding effectiveness evaluation of paints according to the type and amount of carbon material was conducted to develop EMP shielding inorganic paint using carbon materials. In order to analyze the improvement of compatibility and dispersibility between materials, experiments were conducted two times with about 27 types of mixture proportions, and the electromagnetic pulse shielding effectiveness was evaluated by the electrical resistance measurement method. As a result of applying the EMP shielding paint developed through this study to shielding concrete, it was confirmed that the shielding performance was improved from about 25 dB to a maximum of 40 dB.

Grouting Properties using Thixotropic Material and Vibration Impact Method (가소성 그라우트 재료와 진동 및 충격을 부여하는 공법에 의한 지반개량 특성)

  • Keeseok Kim;Haseog Kim;Bong-hyun Baek;Simhun Yuk
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • In grouting, the LW method is commonly employed to induce the gelation of cementitious material using water glass, thereby restricting the extent of material injection. Nevertheless, challenges manifest when materials are lost before gelation, particularly in regions with high groundwater flow rates or significant subsurface voids. This study developed a thixotropic grout material using LFS and GGBFS to mitigate material loss during injection, with an assessment of its flow characteristics, durability in marine exposure, strength, and injection properties. The outcomes revealed that the thixotropic grout material exhibited flow ranging from 105 to 143 mm and enhanced strength and durability compared to the LW method. Furthermore, field tests substantiated that applying vibration and impact improved impermeability.

Reviewing the fireproofing of lightweight aerataed concrete for fire door interior cores (방화문 내부 심재용 경량기포콘크리트의 방화성 검토)

  • Hong, Sang-Hun;Kim, Bong-Joo;Jung, Ui-In;Kim, Hae-Nah;Park, Jun-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.43-44
    • /
    • 2023
  • Fire doors installed to prevent the spread of fire in buildings are made of paper honeycomb, glass wool, and other materials. Due to their high water absorption rate, they absorb ambient moisture and degrade, and their increased weight causes them to sag internally, creating voids that can warp in the event of a fire and allow flames to pass through. To overcome these issues, research is being conducted on the physical performance of lightweight aerated concrete. However, there is a lack of research on how to ensure fire resistance. Therefore, in this study, the backside temperature of lightweight aerated concrete formulations was measured and compared and analyzied with the physical performance. Since it is difficult to achieve low density by saturation alone, aerated concrete with EPS was produced, which resulted in a density reduction of 24'26%, but the strength increase per unit cement increase was 5'25%, which tended to be lower than the formulation without EPS. The results showed that the lightweight aerated concrete with EPS was 130~140℃ lower than the lightweight aerated concrete with EPS, which is believed to be due to the melting point of EPS delayed the heat diffusion. In the future, wo plan to conduct research to identify the optimal formulation for fire door core materials by varying the amount of EPS added and using industrial by-products to increase long-term strength.

  • PDF

Effect of Silica Particle Size and Aging Time on the Improvement of Mechanical Properties of Geopolymer-Fiber Composites (실리카의 입자 크기와 Aging 시간이 지오폴리머 섬유 복합체의 기계적 물성 향상에 미치는 효과)

  • Yoonjoo Lee;Seokhun Jang;Minkyeong Oh;Dong-Gen Shin;Doo Hyun Choi;Jieun Lee;Chang-Bin Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.175-183
    • /
    • 2024
  • Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.

STUDY ON THE INTERFACE BETWEEN LIGHT-CURED GLASS IONOMER BASE AND INDIRECT COMPOSITE RESIN INLAY AND DENTIN (기저재용 광중합형 글래스아이오노머의 치질 및 복합 레진 인레이에 대한 접착양상)

  • Lee, Song-Hee;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.158-169
    • /
    • 2005
  • This study was done to evaluate the shear bond strength between light-cured glass ionomer cement (GIC) base and resin cement for luting indirect resin inlay and to observe bonding aspects which is produced at the interface between them by SEM. Two types of light cured GIC (Fuji II LC Improved, GC Co. Tokyo, Japan and Vitrebond$^{TM}$, 3M, Paul Minnesota U.S.A) were used in this study. For shear bond test, GIC specimens were made and immersed in 37$^{\circ}C$ distilled water for 1 hour, 24 hours, 1 week and 2 weeks. Eighty resin inlays were prepared with Artglass$^{(R)}$ (Heraeus Kultzer Germany) and luted with Variolink$^{(R)}$ II (Ivoclar Vivadent, Liechtenstein). Shear bond strength of each specimen was measured and fractured surface were examined. Statistical analysis was done with one-way ANOVA. Twenty four extracted human third molars were selected and Class II cavities were prepared and GIC based at axiopulpal lineangle. The specimens were immersed in 37$^{\circ}C$ distilled water for 1 hour, 24 hours, 1 week and 2 weeks. And then the resin inlays were luted to prepared teeth. The specimens were sectioned vertically with low speed saw. The bonding aspect of the specimens were observed by SEM (JSM-5400$^{(R)}$, Jeol, Tokyo, Japan) .There was no significant difference between the shear bond strength according to storage periods of light cured GIC base. And cohesive failure was mostly appeared in GIC On scanning electron micrograph, about 30 - 120 $\mu$m of the gaps were observed on the interface between GIC base and dentin. No gaps were observed on the interface between GTC and resin inlay.

COMPARATIVE STUDY ON FLUORIDE RELEASE AND RE-UPTAKE CAPACITY OF SEVERAL FLUORIDE-RELEASING RESTORATIVE MATERIALS (수종의 수복재의 불소 적용법에 따른 불소 유리에 관한 비교 연구)

  • Lee, Yeon-Ho;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • Fluoride released from dental restorative materials effectively declines the incidence and activity of dental caries and inhibits tooth demineralization. This study investigated the fluoride release and uptake characteristics of one composite resin $(Z-250^{TM})$ three glass ionomer-based restorative material ($Dyract^{(R)}$ AP, Fuji II $LC^{(R)}$, Fuji IX GP $Fast^{(R)}$) Forty discs(6mm diameter and 1mm height) were prepared for each material. Each disc was immersed in 5ml of distilled water within polyethylene vial and stored at $37^{\circ}C$. The distilled water was changed every 24 hours and the release of fluoride was measured for 31 days. At the end of this period, each specimen was subjected to one of four treatments : (A) no fluoride treatment (control), (B) application of a fluoride dentifrice (500ppm) for three minutes three times; (C) application of the 1.23% acidulated phosphate fluoride(APF) foam for one minute once, (D) the same regimen as (B), plus application of the APF foam for one minute once. Then, all samples were reassessed for an additional 7 days. For all samples, the greatest fluoride release was observed after the first day of the study but diminished with time. On the 7th day of the study, fluoride release level was stabilized. Fuji II $LC^{(R)}$ and Fuji IX GP $Fast^{(R)}$ released higher amount of fluoride than other materials ; however, no statistically significant difference was found from Fuji II $LC^{(R)}$ and Fuji IX GP $Fast^{(R)}$. The amount of fluoride of $Dyract^{(R)}$ AP, Fuji II $LC^{(R)}$ and Fuji IX GP $Fast^{(R)}$ was increased after fluoride treatment, and diminished with time.

  • PDF

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF