• Title/Summary/Keyword: Water Cooling

Search Result 2,267, Processing Time 0.029 seconds

A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine (500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

A Study On the Cooling Effect of the Floating Horizontal Solar Cell

  • Jae-hyuk Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.182-186
    • /
    • 2023
  • In this study, we measured the power and temperature of the floating horizontal solar cell in a coastal lagoon and compared with those of ground solar cell and water platform solar cell. Because the bottom surface of the floating horizontal solar cell was contacting the water, cooling effect was expected stronger than other cells. As a result of the measurement, the power of floating horizontal cell was 11.7% higher than that of the ground cell and 15% higher than that of the water platform cell. During the measurement, it was observed that water waves were continuously flowed on the top surface of floating horizontal cell by the wind, and it could be assumed that the cooling effect occurred not only on the bottom surface of the cell but also on the top surface. In order to analyze the cooling effect and power increasing of the horizontal cell in the wave situation, we measured power and temperature of the cell while generating artificial waves in a laboratory equipped with Zenon lamp as a solar simulator. At the height of thewater surface, the power of the cell with waves was 3.7% higherthan without waves and temperature was 4.6℃ lower. At 1 cm and 2 cm below the watersurface, power of the cell with waves was decreased by 14% and 11% than without waves while temperature was same . At 3 cm below the water surface, there was no effect of waves.

A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor (초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석)

  • Kim, T. G.;Hur, N.;Jeong, S.;Jeon, S. B.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.14-21
    • /
    • 2001
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions are analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis, a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system are analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF

A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor (초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석)

  • Kim, T. G.;Hur, N.;Jeong, S.;Jeon, S. B.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.351-358
    • /
    • 2000
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions were analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system were analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

On-line Measurement of Cooling Rate of a Fermenter and its Application for Fed-batch Control (발효조의 냉각량 연속 측정 및 이를 이용한 유가배양제어)

  • Heo, Won;Hong, Gun-Pyo
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.418-423
    • /
    • 2003
  • A laboratory jar fermenter was modified to measure the duration for cooling water supply and the temperatures of the coolant at the inlet and outlet of water jacket. Successful operation of temperature control and on-line measurement was achieved by adjusting optimum parameters of the Proportion-Integral-Derivative temperature controller. The variables measured on-line were used to estimate cooling rates from empirical equations comprised of the time period of cooling water supply and the temperatures of coolant. The measured cooling rate showed a good correlation to the specific growth rate during batch cultivation of E. coli. Cooling rate was measured and applied to programmed cell growth in a fed-batch cultivations. Three fed-batch cultivations were demonstrated by feeding substrate to follow the programmed cooling rates increasing exponentially.

A Study on Regenerative Cooling System for Thrust Chamber Protection (연소실 보호를 위한 재생냉각 방식 연구)

  • Park, Hee-Ho;Kim, Jung-Hun;Choi, Young-Hwan;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.78-85
    • /
    • 2005
  • The purpose of the study was to establish the design procedure and develop the program for designing regenerative cooling system. To obtain the design parameter necessary for the realization of regenerative cooling system, water-cooled regenerative cooling system was designed from suggested procedure. To compare experimental results with a present method of analytically predicting the heat transfer loads, $250kg_{f}$ experimental LRE with water-cooled regenerative cooling system was investigated. Based on the investigation, the good correction between the predicted and measured data was verified. Developed design program can be used to designing Kerosene- cooled regenerative cooling system. The basic experimental data and correlations obtained in this study for 250kgf experimental LRE with water-cooled regenerative cooling system can be directly applicable to the real LRE.

A District Cooling System using Ice Slurry for the Uncertain Cooling Load of the Future and its Economic Evaluation (미래의 불확실한 냉방부하에 대한 아이스슬러리를 이용한 지역냉방시스템 및 경제성 평가)

  • Lee Yoon-Pyo;Ahn Young-Hwan;Yoon Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.776-782
    • /
    • 2006
  • A new district cooling system using ice slurry for the uncertain cooling load of the future is presented. The chilled water produced by the absorption chillers is used for the base cooling load. The temperature of the chilled water is reduced by mixing of ice slurry depending on increasing of the cooling load. Finally, IF of the ice slurry is increased up to 10% at the peak load. The transporting mass flow rate is decreased down to 44.7%, and the diameter of the main pipe is decreased down to 66.7%, but the diameter of the branched pipe is designed as the same size of the chilled water.

A Study on the Characteristics of Heating and Cooling Loads of Standard Chicken Houses in South Korea (국내 표준계사의 냉난방부하 특성 연구)

  • Kwon, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.235-243
    • /
    • 2019
  • In South Korea, millions of poultry have died due to repeated heat waves every year. The purpose of this study is to analyze the characteristics of heating and cooling loads of chicken houses in Korea and to present an effective insulation and ventilation measures to minimize the damage of poultry due to summer heat wave and to save energy in chicken houses in winter. The heating and cooling loads of standard chicken house were calculated. As a result of the calculation of maximum heating load based on the minimum ventilation rate in winter, the outdoor air temperature requiring heating was $6{\sim}7^{\circ}C$ to keep the indoor air temperature of chicken houses as $24^{\circ}C$. The peak cooling load of chicken houses was mostly taken by the heat generated by chickens and the heat gain due to ventilation. The heat gain through building envelopes was as small as neglectable. Most of chicken houses is usually cooled by gigantic forced ventilation in summer in Korea. When the chicken houses are cooled by electric cooling machine such as cooler or air conditioner, it is more effective to keep minimum ventilation rate to reduce the maximum cooling load. To lower the temperature of supplying water to cooling pad, it is recommended to use the underground water below 10 meters from the ground if there is abundant underground water.

An Effectiveness Analysis of the Infrared Signature Reduction with Sea Water Cooling according to the Meteorological Environment (해양환경에 따른 해수냉각의 적외선 신호 저감 효과도 분석)

  • Jung, Ho-Seok;Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.521-528
    • /
    • 2016
  • The surface of a naval ship emits infrared signature because it is mainly heated by the sun. In order to reduce infrared signature, it has been practiced to cool surface of the naval ship by using sea water. In this study, reduction effect of infrared signature was compared according to the parameters which affect emission of infrared signature in order to increase utility of sea water cooling. The analysis results by searching parameters, which can judge operation of sea water cooling, could be utilized as basic data for operation of the naval ship.