• Title/Summary/Keyword: Water Concentration

Search Result 11,884, Processing Time 0.036 seconds

Effects of feed intake and water hardness on fluralaner pharmacokinetics in layer chickens

  • Sari, Ataman Bilge;Gunes, Yigit;Anlas, Ceren;Alkan, Fulya Ustun;Guncum, Enes;Ustuner, Oya;Bakirel, Tulay
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.64.1-64.9
    • /
    • 2022
  • Background: Fluralaner is a novel drug belonging to the isoxazoline class that acts on external parasites of domestic animals. It is used systemically via drinking water, especially against red poultry mite in layer chickens. Fluralaner is frequently used in layers infected with D. gallinae. However, no study to date has investigated the effects of feed intake and water hardness. Objectives: This study aimed to investigate the effects of variable water hardness and feed intake on the pharmacokinetic profile of fluralaner. Methods: Layer chickens were divided into four groups (n = 8): fed + purified water (Group 1), feed restricted + purified water (Group 2), feed restricted + hard water (Group 3), and feed restricted + soft water (Group 4). After administering a single dose of the drug with drinking water, the blood samples were collected for 21 days. Fluralaner concentrations in plasma samples were determined by liquid chromatography/tandem mass spectrometry. The maximum plasma concentration (Cmax), time to reach maximum plasma concentration (tmax), area under the concentration-time curve values (AUC0-21d), half-life (t1/2), and other pharmacokinetic parameters were calculated. Results: Although the highest maximum plasma concentration (Cmax) was determined in Group 1 (fed + purified water), no statistically significant difference was found in the Cmax, tmax, t1/2, MRT0-inf_obs, Vz/Fobs, and Cl/F_obs parameters between the experimental groups. Conclusions: It was concluded that the feed intake or water hardness did not change the pharmacokinetic profile of fluralaner in layer chickens. Therefore, fluralaner could be used before or after feeding with the varying water hardness in poultry industry.

The Effect of Boiling Water on DBPs and Taste-and-Odor Compounds in Drinking Water (음용수에서 소독부산물과 이취미 유발물질의 끓임 효과)

  • Kim, Chang-Mo;Choi, In-Cheol;Chang, Hyun-Seong;Park, Hyeon;Han, Sun-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.262-267
    • /
    • 2006
  • DBPs and T&O(taste-and-odor) compounds in drinking water is one of main source to deteriorate water quality. So, these compounds can cause adverse health effects and result in many consumer complaints aesthetically. This experiments carried out to investigate the effect of boiling water on DBPs and T&O compounds in the tap water. THMs and TCM concentration were reduced by 91.3%, 88.9% after 5 min of boiling, respectively. It is certainly, resulted from volatilization of TCM. TCAA concentration decreased when the water was boiled, too. By contrast, the concentration of DCAA was increased with duration time from boiling-point. The reduction of TCAA from the boiled water can be attributed to chemical transformation like decarboxylation. T&O compounds such as geosmin and 2-MIB was effectively removed by boiling of water, resulting in the removal efficiency of 97.1%, 94.4% after 5 min of boiling, respectively.

Removal of Heavy Metals Through Conventional Water Treatment Processes (정수처리 과정에서의 중금속제거에 관한 연구)

  • 김중구;고영송;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.36-44
    • /
    • 1994
  • A study was carried out in order to investigate the removal efficiencies and removal characteristics of heaw metals such as Pb, Cd, Cr, Cu in raw water by one of conventional water treatment processes. The coagulants used in this study were Alum and PAC. Three kinds of water samples were provided: kaolin water, kaolin water mixed with humic acid and raw water from Han River mixed with suspended matter deposited on raw water inlet pipe. Heaw metals were added to the water samples with their respective turbidity, and jar tests were performed. In the results from heaw metal removal studies, lead might be adsorbed or exchanged on the particle surface (SS) rather than react with organic matter added. Cadmium was affected on the dissolved organic matter. Chromium was affected by the both dissolved organic matter and SS concentration, and the restabilization and the enmeshment appeared at moderate (50~80 NTU) and high (100 NTU) turbidity as defined in this experimenL The removal efficiency of copper was relatively little affected by the dissolved organic matter but by SS concentration in comparison with other heavy metals. In these studies as to the raw water turbidities and concentration of heaw metals, it is proved out that the removal efficiency on heaw metals in both cases of PAC and Alum as coagulants was not significantly different.

  • PDF

Minimizing of Residual Aluminum in Water Treatment Process (정수처리공정에서 잔류 알루미늄 최소화 방안)

  • 이미영;조덕희;박종현
    • Proceedings of the Korean Sanitation Conference
    • /
    • 2004.11a
    • /
    • pp.54-65
    • /
    • 2004
  • Use of aluminum salts as coagulants In water treatment may lead to increased concentrations of aluminum in finished water. Aluminum is a suspected causative agent of neurological disorders such as Alzheimer's disease. The objective of this study was to examine variation and minimizing in residual aluminum concentration during water treatment process. The aluminum sources at Bokjeong Water Plant were present naturally aluminum in the raw water and derived due to use of PACS as a coagulant. Much of the raw water total aluminum were in particulate and suspended aluminum. In this study was compared the optimize condition to minimize the concentration of residual aluminum using Jar-test with the various coagulants such as alum, PAC, PACS. The results indicated that PACS was more effective than alum, PAC and insufficient or excessive alum, PAC, PACS addition led to increase residual aluminum. Adjustment raw water pH $6.5\~7.0$ before coagulation using PACS was capable of minimizing total and dissolved aluminum. Thus it is important that the optimal dosage of coagulant and the optimal pH adjustment before coagulation can decided to minimize the concentration of residual aluminum in treated water.

  • PDF

Rejection property of geosmin and 2-Methylisoborneol (MIB) with high concentration level at multi stage nanofiltration (NF) membrane system (다단 나노여과 공정에서 고농도 geosmin 및 2-Methylisoborneol (MIB)의 제거특성)

  • Yu, Young-Beom;Choi, Yang Hun;Kim, Dong Jin;Kwon, Soon-Buhm;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.397-409
    • /
    • 2014
  • Algal problem in drinking water treatment is being gradually increased by causing deterioration of water supplies therefore, especially taste and odor compounds such as geosmin and 2-MIB occur mainly aesthetic problem by its unpleasant effects resulting in the subsequent onset of complaints from drinking water consumer. Recently, geosmin and 2-MIB are detected frequently at abnormally high concentration level. However, conventional water treatment without advanced water treatment processes such as adsorption and oxidation process, cannot remove these two compounds efficiently. Moreover, it is known that the advanced treatment processes i.e. adsorption and oxidation have also several limits to the removal of geosmin and 2-MIB. Therefore, the purpose of this study was not only to evaluate full scale nanofiltration membrane system with $300m^3/day$ of permeate capacity and 90% of recovery on the removal of geosmin and 2-MIB in spiked natural raw water sources at high feed concentration with a range of approximately 500 to 2,500 ng/L, but also to observe rejection property of the compounds within multi stage NF membrane system. Rejection rate of geosmin and 2-MIB by NF membrane process was 96% that is 4% of passage regardless of the feed water concentration which indicates NF membrane system with an operational values suggested in this research can be employed in drinking water treatment plant to control geosmin and 2-MIB of high concentration. But, according to results of regression analysis in this study it is recommended that feed water concentration of geosmin and 2-MIB would not exceed 220 and 300 ng/L respectively which is not to be perceived in drinking tap water. Also it suggests that the removal rate might be depended on an operating conditions such as feed water characteristics and membrane flux. When each stage of NF membrane system was evaluated relatively higher removal rate was observed at the conditions that is lower flux, higher DOC and TDS, i.e., $2^{nd}$ stage NF membrane systems, possibly due to an interaction mechanisms between compounds and cake layer on the membrane surfaces.

The Analysis of Chloride Ion of Ground Water in the West Coast District of Jeollabuk-Do using Spatial Interpolation (공간보간법을 이용한 전라북도 서해안 지역의 지하수 염소이온 분석)

  • Lee, Geun-Sang;Im, Dong-Gil;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, the data that examined the chloride ion concentration of ground water wells in the west coast of Jeollabukdo applying the GIS spatial estimation method were analyzed. In particular, through the designation of a validation point among ground water wells and then the analysis of error characteristics of the chloride ion concentration by each method of IDW (Inverse Distance Weight), Spline, and Kriging Interpolation method which is proper for estimating salt water intrusion was selected. The main conclusion from this study is as follows. First, as a result of analyzing the error characteristics of various spatial estimation methods by using the data from the chloride ion concentration of 485 ground water wells, the IDW method was found to be the most appropriate for estimating chloride ion concentration by salt water intrusion. Second, analyzing the average chloride ion concentration of the targeted regions has revealed that Gunsan-si with the record of $541mg/{\ell}$ did not meet water quality standards even for industrial use. Both Gimje-si and Gochang-gun satisfied drinking water quality standards and Buan-gun with $272mg/{\ell}$ was slightly below the standards for drinking water. Third, concerning the results of analysis according to administrative districts, as the areas adjacent to the west coast such as Daemyeong-dong, Joong-dong, Jangjae-dong and Guemam-dong in Gunsan-si are found to have very high chloride ion concentration, and both Hoehyeon-myeon and Daeya-myeon bounded by the Mankeong river did not meet water quality standards even for industrial use. From these facts, it is concluded that salt water intrusion has a great effect on Gunsan-si generally.

Effect of Bean Water Concentration and Incubation Time on Amylase Activity and Physicochemical Characteristics of Yukwa Paste (콩물 농도 및 숙성 시간이 Amylase 의 활성과 유과 반죽의 특성에 미치는 영향)

  • Sohn, Kyung-Hee;Jo, Mi-Na;Jeon, Hyeong-Ju;Park, Jin;Joo, Myung-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.288-293
    • /
    • 2001
  • ${\alpha}-amylase$ activities of bean water was not significantly influenced by bean water concentrations but they were remarkably influenced by different temperatures and substrates. ${\alpha}-amylase$ activities of bean water on cooked starch were significantly higher than those on raw starch. ${\beta}-amylase$ and glucoamylase activities in 14% bean water were significantly higher than those in 7% bean water. Yukwa paste is glutinous rice flour paste. Bean water was added to Yukwa paste by 0, 7, 14% and incubated 0, 3, 6, 9, 12 hours at $60^{\circ}C$. The pH of Yukwa paste increased with bean water concentration and decreased with the incubation time. The viscosity decreased with bean water concentration and incubation time. The ruducing sugar content of Yukwa paste increased with bean water concentration and incubation time. The changes of reducing sugar content in cooked Yukwa paste were much higher than those in the raw one. ${\alpha},\;{\beta}-amylase$glucoamylase activities of Yukwa paste also increased with bean water concentration, and their activities were much higher on the cooked glutinous rice flour than those on the raw one. The SEM observation on the freeze-dried flour of Yukwa paste showed breakdown of amylopectin structure by addition of bean water in the paste.

  • PDF

Effects of Se Pye San Water Extract on the Plasma Cortisol Concentration, Arterial Blood $PCO_2$ and $PO_2$ in the Rabbit (세폐산(洗肺散) 전탕액(煎湯液)이 가토(家兎).혈장(血漿) Cortisol 농도(濃度) 및 동맥혈(動脈血) $PCO_2,\;PO_2$에 미치는 영향(影響))

  • Kim, Dae-Won;Han, Sang-Hwan
    • The Journal of Internal Korean Medicine
    • /
    • v.11 no.1
    • /
    • pp.41-52
    • /
    • 1990
  • After intravenous administration of Se Pye San water extract in the rabbit, the change of plasma cortisol concentration, arterial blood $PCO_2$ and $PO_2$ was obtained such results as follows. 1. The plasma cortisol concentration in the control group was constant, but after intravenous administration of Se Pye San water extract at the dose of 0.2 ml/kg, the above concentration was increased significantly from 2 to 3 hours. Also, the above concentration was increased remarkably at the dose of 0.4 ml/kg from 1 to 4 hours. 2. After intravenous administration of Se Pye San water extract at each dose of 0.2 ml/kg and 0.4 ml/kg, arterial blood $PCO_2$ was decreased remarkably from 1 to 4 hours. 3. No change after intravenous administration of Se Pye San water extract at the dose of 0.2 ml/kg, while arterial blood $PO_2$ was decreased significantly at the dose of 0.4 ml/kg on 3 hours. As a results of the above, the therapeutic action of Se Pye San water extract effected with Jisu (止嗽), Jeong Cheon (定喘), Geo Dam, Cheong Yeol (淸熱) would be related with the increased both plasma cortisol concentration and arterial blood $PO_2$, and the decrease of arterial blood $PCO_2$.

  • PDF

An Experimental Study on the Determination of Minimum Response Concentration of Inorganic Pollutants in Tap Water (수돗물에서 무기 오염물질 최소 반응 농도 결정의 실험적 고찰)

  • Yoon, Sukmin;Kim, Seong-Su;Chea, Seon-Ha;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.208-213
    • /
    • 2017
  • In this study, four inorganic pollutants (cadmium, chromium, manganese, lead), that could cause contamination events in drinking water distribution system, were selected and batch tests were carried out to determine the "minimum response concentration (MRC)", a part of Korean Contamination Warning system establishment. As the results, the minimum response concentration of cadmium was found to be 0.05 to 0.08 mg/L (0.005 mg/L : water quality standard) and that of chrome was 0.03 mg/L (0.05 mg/L). And the minimum reaction concentration was 0.005 mg/L for manganese (0.05 mg / L for water quality) and 0.02~0.08 mg/L for lead (0.01 mg/L).

Relative Microalgal Concentration in Prydz Bay, East Antarctica during Late Austral Summer, 2006

  • Mohan, Rahul;Shukla, Sunil Kumar;Anilkumar, N.;Sudhakar, M.;Prakash, Satya;Ramesh, R.
    • ALGAE
    • /
    • v.24 no.3
    • /
    • pp.139-147
    • /
    • 2009
  • Microalgae using a submersible fluorescence probe in water column (up to 100 m) were measured during the austral summer of 2006 (February) in Prydz Bay, East Antarctica (triangular-shaped embayment in the Indian sector of Southern Ocean). Concurrently, environmental parameters such as temperature, salinity and nitrogen (nitrate, ammonium, urea) uptake rates were measured. The concentration of phytoplankton is relatively high due to availability of high nutrients and low sea surface temperature. Phytoplankton community is dominated by diatoms whereas cryptophytes are in low concentration. The maximum concentration of total chlorophyll is 14.87 ${\mu}g\;L^{-1}$ and is attributed to upwelled subsurface winter water due to local wind forcing, availability of micro-nutrients and increased attenuation of photosynthetically available radiation (PAR). Concentration of blue-green algae is low compared to that of green algae because of low temperature. Comparatively high concentration of yellow substances is due to the influence of Antarctic melt-water whereas cryptophytes are low due to high salinity and mixed water column. Varied concentrations of phytoplankton at different times of Fluoroprobe measurements suggest that the coastal waters of Prydz Bay are influenced by changing sub-surface water temperature and salinity due to subsurface upwelling induced by local winds as also melting/freezing processes in late summer. The productivity is high in coastal water due to the input of macro as well as micro-nutrients.