• Title/Summary/Keyword: Water Absorption Detector

Search Result 13, Processing Time 0.057 seconds

In-line Smart Oil Sensor for Machine Condition Monitoring (기계 상태진단을 위한 인-라인형 오일 모니터링 스마트 센서)

  • Kong, H.;Ossia, C.V.;Han, H.G.;Markova, L.
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.111-121
    • /
    • 2008
  • An integrated in-line oil monitoring detector assigned for continuous in situ monitoring multiple parameters of oil performance for predicting economically optimal oil change intervals and equipment condition control is presented in this study. The detector estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical intensity of oil in three optical wavebands ("Red", "Green" and "Blue") and water content is evaluated as Relative Saturation of oil by water. The detector is able to monitor oils with low light absorption (hydraulic, transformer, turbine, compressor and etc. oils) as well as oils with rather high light absorption in visible waveband (diesel and etc. oils). In a case study that the detector is applied to a diesel engine oil, it is found that the detector provides good results on oil chemical degradation as well as soot concentration.

Angular Dispersion-type Nonscanning Fabry-Perot Interferometer Applied to Ethanol-water Mixture

  • Ko, Jae-Hyeon;Kojima, Seiji
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • The angular dispersion-type non-scanning Fabry-Perot was applied to an ethanol-water mixture in order to investigate its acoustic properties such as the sound velocity and the absorption coefficient. The scattered light from the mixture was analyzed by using the charge-coupled-device area detector, which made the measurement time much shorter than that obtained by using the conventional scanning tandem multi-pass Fabry-Perot interferometer. The sound velocity showed a deviation from ultrasonic sound velocities at low temperatures accompanied by the increase in the absorption coefficient, indicating acoustic dispersion due to the coupling between the acoustic waves and some relaxation process. Based on a simplified viscoelastic theory, the temperature dependence of the relaxation time was obtained. The addition of water molecules to ethanol reduced the relaxation time, consistent with dielectric measurements. The present study showed that the angular dispersion-type Fabry-Perot interferometer combined with an area detector could be a very powerful tool in the real-time monitoring of the acoustic properties of condensed matter.

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.

Preconcentration and Detection of Herbicides in Water by Using the On-line SPE-HPLC System and Photochemical Reaction

  • 이승호;이성광;박영훈;김현주;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1165-1171
    • /
    • 1999
  • The analysis of trace herbicides using the on-line SPE-HPLC system and a photochemical reaction was studied. 18 compounds of herbicides including eight triazines, six phenoxy acids and esters, and four other herbicides were examined. The on-line SPE-HPLC system developed for selection of eluting solvent improved chromatographic efficiency. The recoveries of herbicides were higher than 77%. With 100 mL tap water samples, the detection limits for all analytes were in the 0.1-2.3×10-10 M range. Detection was done by a UV or fluorescence spectrometer after photochemical reaction at the end of the column with 2W or 450W mercury lamp. Without a photochemical reaction, all compounds responded to 230 nm UV detector, but phenoxy acids and esters were weakly detected. However, with a photochemical reaction, these compounds were selectively detected at 320 nm wavelength of UV absorption and 400 nm emission of the fluorescence detectors. This method can be used for the analysis of environmental water containing herbicides at trace levels.

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.11-22
    • /
    • 1998
  • The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Antioxidant Effects and Spectrophotometry Analysis of Alkaloids from Vinca minor (빈카 마이너 추출물에 함유된 알칼로이드들의 분광학적 분석 및 항산화 효능 연구)

  • Kim, Jun-Sub;Joo, Ji-Hye;Kang, Jo-Eun;Jang, Sun-Dong;Jung, Kyung-Hwan;Moon, Gi-Seong;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.16-22
    • /
    • 2015
  • Alkaloids of Vinca minor L. were characterized by HPLC equipped with the photo diode array detector and compared their UV/vis absorption spectra with an index material such as vincamine. UV/vis absorption spectra of more than 9 compounds belong to various classes such as flavonoids were shown and characterized. Extracts with ethanol or hot water were tested against the DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical to investigate their antioxidant activity. Based on the results, those extracts show about 14-15% of antioxidant activity of quercetine and vitamin C used as standards.

A Study on the Simultaneous Analysis of Fat-Soluble Vitamins in Food Stuffs and Vitamin Products by High Performance Liquid Chromatography (고성능 액체 크로마토그래피에 의한 식품 및 비타민 제제중의 지용성 비타민의 동시 분석에 관한 연구)

  • Poongzag Kim;Chong-Hyeak Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.46-54
    • /
    • 1989
  • The extraction method and quantitative analysis for the fat-soluble vitamins present in food stuffs and vitamin products have been investigated. The simultaneous separation and analysis of the vitamins by reverse phase high performance liquid chromatographic method was conducted using an isocratic elution with methanol : water (95 : 5) eluent on a Novapak $C_{18}$ column. The detection of vitamins was achieved by a variable wavelength UV detector. To improve the detection sensitivity detection wavelengths were set at the highest absorption bands such as 330, 265, 285, and 290nm for the respective vitamins. The analysis for the fat-soluble vitamins was finished within 40 minutes. Alkaline hydrolysis and enzymatic hydrolysis were investigated for the sample preparation; and liquid-liquid extraction and liquid-solid extraction were attempted for the extraction of vitamins. Both hydrolysis methods were turned out to be appropriate for the analysis for vitamins A, D, and E, while for the analysis of vitamin K the enzymatic hydrolysis method demonstrated better results. Diethyl ether, pentane, and n-hexane were found to give higher recovery for the liquid-liquid extraction and silica cartridge for the liquid-solid extraction.

  • PDF