DOI QR코드

DOI QR Code

Angular Dispersion-type Nonscanning Fabry-Perot Interferometer Applied to Ethanol-water Mixture

  • Ko, Jae-Hyeon (Department of Physics, Hallym University) ;
  • Kojima, Seiji (Institute of Materials Science, University of Tsukuba)
  • Received : 2009.04.30
  • Accepted : 2009.06.02
  • Published : 2009.06.25

Abstract

The angular dispersion-type non-scanning Fabry-Perot was applied to an ethanol-water mixture in order to investigate its acoustic properties such as the sound velocity and the absorption coefficient. The scattered light from the mixture was analyzed by using the charge-coupled-device area detector, which made the measurement time much shorter than that obtained by using the conventional scanning tandem multi-pass Fabry-Perot interferometer. The sound velocity showed a deviation from ultrasonic sound velocities at low temperatures accompanied by the increase in the absorption coefficient, indicating acoustic dispersion due to the coupling between the acoustic waves and some relaxation process. Based on a simplified viscoelastic theory, the temperature dependence of the relaxation time was obtained. The addition of water molecules to ethanol reduced the relaxation time, consistent with dielectric measurements. The present study showed that the angular dispersion-type Fabry-Perot interferometer combined with an area detector could be a very powerful tool in the real-time monitoring of the acoustic properties of condensed matter.

Keywords

References

  1. C. Fabry and A. Perot, 'Sur les franges des lames minces argentees et leur application a la mesure de petites epaisseurs d'air,' Ann. Chim. Phys. 12, 459-501 (1897)
  2. J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bristol, UK, 1989)
  3. G. Hernandez, Fabry-Perot Interferometers (Cambridge University Press, New York, USA, 1986)
  4. J. R. Sandercock, Light Scattering in Solids III, edited by M. Cardona and G. Guntherodt (Springer, Berlin, Germany, 1982), pp. 173
  5. J. C. Tsang, Light Scattering in Solids V, edited by M. Cardona and G. Guntherodt (Springer, Berlin, Germany, 1989), pp. 255
  6. D. Walton, J. J. Vanderwal, H. Xia, and P. Zhao, 'The use of area detectors in Brillouin spectroscopy,' Rev. Sci. Instrum. 67, 2727-2731 (1996) https://doi.org/10.1063/1.1147101
  7. S. Itoh, T. Yamana, and S. Kojima, 'Quick measurement of Brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system,' Jpn. J. Appl. Phys. 35, 2879-2881 (1996) https://doi.org/10.1143/JJAP.35.2879
  8. J.-H. Ko, Z. Chao, S. Itoh, and S. Kojima, 'Brillouin measurement of glass-forming ethanol using an angular dispersion-type Fabry-Perot interferometer,' Jpn. J. Appl. Phys. 40, 3575-3578 (2001) https://doi.org/10.1143/JJAP.40.3575
  9. J.-H. Ko and S. Kojima, 'Nonscanning Brillouin spectroscopy applied to solid materials,' Rev. Sci. Instrum. 73, 4390-4392 (2002) https://doi.org/10.1063/1.1516847
  10. Y. Ike and S. Kojima, 'Brillouin scattering measurement of stoichiometric lithium niobate crystals by using an angular dispersion-type Fabry-Perot interferometer,' J. Korean Phys. Soc. 46, 90-92 (2005)
  11. J.-H. Ko and S. Kojima, 'Brillouin-scattering study of Ammonium Dihydrogen Phosphate by using a nonscanning angular-dispersion-type Fabry-Perot interferometer,' J. Korean Phys. Soc. 47, S271-S275 (2005) https://doi.org/10.3938/jkps.47.271
  12. G. D'Arrigo and A. Paparelli, 'Sound propagation in water-ethanol mixtures at low temperatures I. ultrasonic velocity,' J. Chem. Phys. 88, 405-415 (1988) https://doi.org/10.1063/1.454616
  13. P. G. Debenedetti and F. H. Stillinger, 'Supercooled liquids and the glass transition,' Nature 410, 259-267 (2001) https://doi.org/10.1038/35065704
  14. R. Brand, P. Lunkenheimer, U. Schneider, and A. Loidl, 'Excess wing in the dielectric loss of glass-forming ethanol: a relaxation process,' Phys. Rev. B 62, 8878-8883 (2000) https://doi.org/10.1103/PhysRevB.62.8878
  15. T. Sato, A. Chiba, and R. Nozaki, 'Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process,' J. Chem. Phys. 110, 2508-2521 (1999) https://doi.org/10.1063/1.477956
  16. A. Raudino, 'Modeling the hydrodynamic fluctuations of self-associating fluids: an application to the Brillouin scattering of 1-octanol,' J. Chem. Phys. 117, 4907-4924 (2002) https://doi.org/10.1063/1.1490590
  17. L. M. Torell, 'Brillouin scattering study of hypersonic relaxation in a $Ca(NO_3)_2-KNO_3$ mixture,' J. Chem. Phys. 76, 3467-3473 (1982) https://doi.org/10.1063/1.443445
  18. Y. Seshimo, Y. Ike, and S. Kojima, 'Brillouin scattering study of cluster structure in lower alcohol water mixtures,' Jpn. J. Appl. Phys. 47, 3836-3838 (2008) https://doi.org/10.1143/JJAP.47.3836

Cited by

  1. Acoustic properties of aspirin in its various phases and transformation stages studied by Brillouin scattering vol.357, pp.2, 2011, https://doi.org/10.1016/j.jnoncrysol.2010.06.036
  2. Pressure Dependence of Acoustic Properties of Liquid Ethanol by using High-pressure Brillouin Spectroscopy vol.24, pp.5, 2013, https://doi.org/10.3807/KJOP.2013.24.5.279
  3. Micro-Brillouin Spectroscopy Applied to the Glass Transition of Anti-inflammatory Egonol vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.403
  4. ANISOTROPY OF ELASTIC PROPERTIES AND CENTRAL PEAK BEHAVIORS OF UNIAXIAL STRONTIUM BARIUM NIOBATE RELAXOR SINGLE CRYSTALS vol.01, pp.01, 2011, https://doi.org/10.1142/S2010135X11000124
  5. A micro-Brillouin scattering study on relaxor ferroelectric Pb[(Zn1/3Nb2/3)1−xTix]O3 single crystals with x = 0.07 vol.11, pp.3, 2011, https://doi.org/10.1016/j.cap.2011.01.009
  6. Ferroelectric phase transitions studied by dielectric and light scattering spectroscopies on Ba1−xCaxTiO3 single crystals (x=0.12, 0.20) vol.38, 2012, https://doi.org/10.1016/j.ceramint.2011.04.040