• Title/Summary/Keyword: Wastewater treatment system

Search Result 998, Processing Time 0.029 seconds

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.

Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution

  • Sajjadi, Saeed;Khataee, Alireza;Soltani, Reza Darvishi Cheshmeh;Bagheri, Nafiseh;Karimi, Afzal;Azar, Amirali Ebadi Fard
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.406-415
    • /
    • 2018
  • Here, as-synthesized $Fe_3O_4$ nanoparticles were incorporated into the zeolitic imidazolate framework (ZIF-8) lattice to activate sodium percarbonate (SPC) for degradation of methylene blue (MB). The reaction rate constant of $Fe_3O_4@ZIF-8/SPC$ process ($0.0632min^{-1}$) at acidic conditions (pH = 3) was more than six times that of the $Fe_3O_4/SPC$ system ($0.009min^{-1}$). Decreasing the solute concentration, along with increasing SPC concentration and $Fe_3O_4@ZIF-8$ nanocomposite (NC) dosage, favored the catalytic degradation of MB. The $Fe_3O_4@ZIF-8$ NC after fifteen consecutive treatment processes showed the excellent stability with a negligible drop in the efficiency of the system (<10%). The reaction pathway was obtained via GC-MS analysis.

Study on the Standard Oxygen Transfer Efficiency Monitoring System in the Aeration Tank for Reuse and Discharge of Wastewater (하폐수의 재사용 및 방류를 위한 폭기조 내 표준산소전달 효율 모니터링 시스템에 관한 연구)

  • Kim, Hong-Seok;Kim, Yong-Beom;Ko, Kyung-Han;Kim, Sang-Woo;Shim, Hwan-bo
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.73-78
    • /
    • 2019
  • In this investigation, off-gas generated from the activated sludge in wastewater treatment plant was monitored. Through monitoring, the oxygen transfer efficiency in the aeration system and the reliability was evaluated by comparing to clean water. First, the dissolved oxygen, oxygen transfer coefficient, and standard oxygen transfer efficiency were measured based on clean water, and the values were 8.60 mg/L, 9.490/hr and 23.96%, respectively. The off-gas monitoring at the wastewater treatment plant indicated that the standard oxygen transfer efficiency was 22.81%. Little difference in oxygen transfer efficiency this data inferred that the performance was improved through diffuser installation in the field monitoring system.

Local Control and Remote Optimization for CSTR Wastewater Treatment Systems (CSTR 하.폐수처리장의 국지 제어 및 원격 최적화 시스템)

  • Bae, Hyeon;Seo, Hyun-Yong;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.21-25
    • /
    • 2002
  • Activated sludge processes are widely used in biological wastewater treatment processes. The main motivation of this research is to develop an intelligent control strategy for activated sludge process (ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of wastewater, the change in influent rate, weather conditions, and so on. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP model based on Matlab/Simulink is designed in this paper. The performance of the model is tested by IWA (International Water Association) and COST (European Cooperation in the filed of Scientific and Technical Research) data that include steady-state results during 14 days. In this paper, fuzzy logic control approach is applied to control the DO (dissolved oxygen) concentration. The fuzzy logic controller that includes two inputs and one output can adjust air flowrate. Also, this paper introduces the remote monitoring and control system that is applied for the CSTR (Continuously Stirred Tank Reactor) wastewater treatment system. The CSTR plant has a local control and the remote monitoring system which is contained communication parts which consist of LAN (Local Area Network) network and CDMA (Code Division Multiple Access) wireless module. Remote control and monitoring systems are constructed in the laboratory.

  • PDF

Relationship Between C/N Ratio and Nitrogen Removal in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지공정에서 C/N비와 질소제거의 관계)

  • 서인석;김병군;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.57-65
    • /
    • 1998
  • In this research, Effect of C/N ratio on nutrient removal in intermittently aerated activated sludge system(IAASS) was investigated with dormitary, building and swine wastewater. Three types (2-stage, 4-stage, modified) of IAASS were operated. Time interval of aeration/nonaeration in IAASS was 1hr/1hr. In treatment of Dormitary wastewater(BOD/T-N ratio : 4.4), Building wastewater (BOD/T-N ratio : 3.14) and swine wastewater(BOD/T-N ratio : 3.84), Nitrogen removal efficiency of 80, 70 and 90.4% was achieved, respectively. Nitrogen removal in IAASS was a great influenced on influent C/N ratio, efficient nitrogen removal was achieved at BOD/T-N ratio over 4. In IAASS operation, $\Delta $BOD mg/L/$\Delta $ nitrogen mg/L ratio was about 4-6. Simultaneous removal of organic, nitrogen and phosphorus in IAASS can achieved. And influent organic was efficiently utilized in denitrification. IAASS could be one of the best alternative process for the retrofit of conventional activated sludge system for the removal of nutrients.

  • PDF

Potential of a Bioelectrochemical Technology for the Polishing of Domestic Wastewater Treatment Plant Effluent (생물전기화학기술을 이용한 하수처리장 방류수 수질개선 가능성)

  • Song, Young-Chae;Oh, Gyung-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • The study on the improvement of discharge water quality from domestic wastewater treatment plant (DWTP) was performed in a filter type bioelectrochemical system. The COD removal efficiency for a synthetic discharge water was about 88%, and the effluent COD was less than 5mg/L. The nitrification efficiency of the bioelectrochemical system was over 97%, but a considerable amount of the nitrogen was remained as nitrate form in the effluent. The total nitrogen removal efficiency was only around 30%. There are no significant differences in the removal of COD and nitrogen at 0.6 and 0.8V of the applied voltages between anode and cathode. The removal of COD and nitrogen in the system were quite stable when the HRT ranged from 60 to 15 minutes, and at 10 minutes of HRT, the nitrification efficiency was slightly decreased. The performance of the bioelectrochemical system has quickly recovered from the shocks in the influent due to high concentration of COD and nitrogen. For the effluent that discharged from the DWTP, the removal efficiencies of COD and total nitrogen from the bioelectrochemical system were 50 and 30%, respectively. Thus the bioelectrochemical system was a feasible process for further polishing the effluent quality from DWTP.

A study of struvite control using CO2 in sewage treatment process (하수처리공정에서 이산화탄소를 이용한 스트러바이트 제어에 관한 연구)

  • Han, Keumseok;Hong, Seongho;Choi, Youngjune
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.261-268
    • /
    • 2018
  • Sludge transporting pipes in wastewater treatment plant are easy to be clogged with struvite when the digested sludge and dehydrated filtrate are transported through the pipes, which lowers the efficiency of sludge treatment system in a WWTP. pH is one of the most important factors in struvite formation, and carbon dioxide separated from biogas can be used to control pH and struvite formation. By controlling pH, the amount of dehydrating agent can be reduced by about 10%, which saves the budget for facility maintenance. As $CO_2$ is reused and dehydrating chemicals are saved, the approach can contribute to global warming gas reduction.

The Discharge Characteristic of Micropollutants in Effluents from Major Sewage and Wastewater Treatment Facilities in GyeongSangBukdo (경상북도내 주요 하폐수처리장 방류수의 미량유해물질 배출특성)

  • Seo, Sang-Wook;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.673-678
    • /
    • 2011
  • Water samples from several wastewater treatment plants and two industry drains in Gyeongsangbukdo were investigated for concentration levels of micropollutants. Samples were taken totally four times from May to November of 2008 and tested for seven factors including pesticide, 1,4-Dioxane and Perchlorate which had been big issues for Nakdong river because of their contaminations. As results, 2,4-D, Alachlor, and BEHA were not detected while BEHP was detected at some sampling sites. 1,4-Dioxane and Perchlorate were also detected in wide ranges from several sampling sites. Therefore, continuous supervising and monitoring systems needed to be invested for proper management for micropollutants since those micropollutants could affect human health and aquatic system with low concentration levels.