• Title/Summary/Keyword: Wastewater purification

Search Result 154, Processing Time 0.035 seconds

Analyses of Seasonal Water Quality Pollution for Side Planning (수변계획을 위한 계절별 수질오염 분석)

  • Lee, Yang-Kyoo;Han, Jung-Geun;Hong, Chang-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.347-355
    • /
    • 2006
  • Anyang Stream including its main branch is the biggest branch stream of Han River in Korea. The geological and geomorphological characteristics were investigated to the affected area of Anyang Stream, in which rainfall characteristic was analyzed. The water quality surveyed that the analysis of water pollution used to biotic index and biological water pollution. The rainfall pattern in this area was like to that of typical Korea, but the rate of trigger and runoff during summer season(June~August) is more higher than mean of Korea. Before 2003, a dried stream is severe status, which was due to abundant runoff, but this status are improved. After 1997, water quality of stream is recovering status such as water pollution of stream steeply decreased. Especially after 2003, this trend is more quickly improved. Although, owing to the increasing of a T-N and SS at upstream wastewater were due to bad collection of industrial factories, livestock's and mans living, the water quality worsted at upstream. Water quality in total section of main stream was severely contaminated that water-quality limit is 5 with polysaprobic by water self-purification. That of main branch was 1~3limits with ${\alpha}$- and ${\beta}$-mesosaprobic in Anyang city area, But water quality in all area about another branch of Anyang stream except Anyang city area was almost under of 3 grades. Though trying of Anyang city for recover movement(completion of 2nd Sewage Treatment Plant and Water supply pipe system) on Anyang stream, water pollution states of upper branch in Anyang stream was not better than its of 2002 because it may be difference of control area on other cities.

The measures to reduce sewer odor in South Korea through sewer odor reduction system in Los Angeles and San Francisco (Los Angeles와 San Francisco의 악취 저감 시스템을 통해 본 우리나라 하수도의 악취 저감 방안)

  • Ji, Hyonwook;Yoo, Sungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.445-451
    • /
    • 2018
  • Urban sanitary sewer systems can aid in preventing inundation, and can improve civil health by effectively disposing stormwater and wastewater. However, since sewage odor can cause adverse effects, numerous technical and administrative studies have been conducted for reducing such odor. European countries and the United States of America (USA) built modern sewer systems in the late 19th century, and have since been endeavoring to eliminate sewage odors. Several cities of the USA, such as Los Angeles (LA) that has a separate sewer system and San Francisco (SF) that has a combined sewer system, have produced and distributed odor control master plan manuals. Features common in the odor reduction plans of both these cities are that the odor reduction programs are operated in all the respective local regions and are supported by administrative systems. The primary aspectual difference between the two said programs is that the city of LA employs a sewage air purification system, whereas the city of SF controls the emission of major odor causing compounds. Compared to the existing sewer odor reduction systems of these two cities, South Korea is still in the initial phase of development. Through technical studies and policy implementations for sewer odor reduction, a foundation can be laid for improving the civil health quality.

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Optimum Pre-treatment Method in Constructed Wetlands by Natural Purification Method for Treating Livestock Wastewater (자연정화공법에 의한 인공습지에서 효과적인 축산폐수처리를 위한 최적 전처리방법 구명)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Seong-Tea;Jeong, Tae-Uk;Choi, Jeong-Ho;Lee, Sang-Won;Cho, Ju-Sik;Kim, Hyun-Ook;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.425-433
    • /
    • 2011
  • In order to obtain optimum pre-treatment methods and improve T-N and T-P removal efficiencies, removal rates of pollutants in small-scale livestock wastewater treatment apparatus with water plant filtration bed or activated sludge tank were investigated. Based on the results from the optimum pre-treatment in small-scale livestock wastewater treatment apparatus, removal efficiencies of pollutants in livestock wastewater treatment plant with water plant filtration and activated sludge beds. The removal rates of COD, SS, T-N, and T-P in effluent were 83, 89, 63 and 87% in small-scale livestock wastewater treatment apparatus with water plant filtration bed, respectively. The removal rates of COD, SS, T-N, and T-P in effluent were 96, 95, 86 and 92% in small-scale livestock wastewater treatment apparatus with activated sludge tank, respectively. For increasing the COD, SS, T-N, and T-P removals in small-scale livestock wastewater treatment apparatus, the water plant filtration and activated sludge beds are recommended. In livestock wastewater treatment plant with water plant filtration ($1^{st}$ treatment) and activated sludge ($2^{nd}$ treatment) beds, the concentrations of COD, SS, T-N, and T-P in effluent were 39, 15, 42 and $1mg\;L^{-1}$, respectively. It was shown that the concentrations of COD, SS, T-N, and T-P met acceptable effluent quality standard for livestock wastewater. Based on the above results, the removal rates of COD, SS, T-N, and T-P in effluent were over 99.8, 99.9, 99.2, and 99.9% in livestock wastewater treatment plant, respectively.

Preparation and Characterization of Carbonized Material from Al-Fe-Mg-Si Nanocomposites Impregnated Biomass

  • Kim, Jin Woo;Lee, Chul Jae
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2018
  • Our present study, we impregnated Al-Fe-Mg-Si (NFM) nanocomposites having various concentrations 0, 1000, 3000, and 5000 mg/L in biomass in order to make carbonized biomass. We characterized the properties of the impregnated samples through thermogravimetric/differential thermal analysis (TG-DTA), pore distribution, scanning electron microscopy (SEM). The best results were observed for a NFM nanocomposites concentration of 5000 mg/L. After the first heat treatment, carbonization, and activation processes, the fixed carbon ratio and iodine adsorptivity were increased by 21.89% and 368 mg/g, 23.98% and 475 mg/g, 26.40% and 238 mg/g, respectively. The remove rate of malodorous and VOCs were that the sample shows good removal capabilities. From above results, our sample could be used for the removal of noxious and malodorous gases and for the purification of wastewater.

A Study on the Velocity Profiles and Pressure Distributions in Ejector Linking Inhale Duct (흡입관이 부착된 이젝터의 속도분포와 압력분포 연구)

  • Lee Heang-Nam;Park Gil-Moon;Lee Duck-Gu;Sul Jae-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.488-494
    • /
    • 2005
  • The ejector is used to obtain a vacuum state, and it has been applied to a lot of industry field such as a heat engine, a fluid instrument power plant. a food industry, an environment industry etc., because there is no problem even it is mixed with any kind of liquid, gas. and solid. The flow characteristics in the ejector was investigated by a PIV and a CFD. The agreement between numerical analysis and experiment shows the validity of this study and the results of this study would be useful to the engineers who design for the flow systems for heating. ventilation. air conditioning and wastewater purification plants.

An Experimental Study on the Flew Characteristics in Dividing Rectangular Duet by using a PIV Technique (PIV기법을 이용한 분기 사각덕트네의 유동특성에 관한 실험적 연구)

  • 이행남;박길문;이덕구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1195-1202
    • /
    • 2001
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean x-y stress distributions, mean vorticity and total pressure distributions are Obtained for three different Reynolds numbers(578, 620, 688) Using PIV measurements and CFD analysis. Also, three different rates of discharge Q=26.11 l/min, Q=28.11 $\ell$/min, Q=31.17 $\ell$/min) were selected foy experimental conditions. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

The Velocity distributions of Dividing Region to Internal Wall and External Wall in 90$^{\circ}$ Dividing Duct (90$^{\circ}$분기덕트에서 분기부의 내 .외벽의 속도분포)

  • 이행남;박길문;손현철;이덕구;이종구;김대욱
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.35-39
    • /
    • 2002
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean vorticity and total pressure distributions are obtained for three different Reynolds numbers(578, 620, 688) using PIV measurements and CFD analysis. Also, dividing duct $90^{\circ}$ were selected for study. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

Carbon Containing Compositions

  • Mansurova, R.M.;Mansurov, Z.A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.5-15
    • /
    • 2001
  • The experiment established optimal conditions for over-carbonization. With the use of the electron microscopy and X-ray phase analysis the regularities of carbon deposit formation in process of methane and propane pyrolysis on the zeolites, Kazakhstan natural clays, chrome and bauxite sludge containing metal oxides of iron subgroup, have been studied. In process of over-carbonization the trivalent iron was reduced to metal form. In addition, the carbon tubes of divers morphology had been impregnated with ultra-dispersed metal particles. The kinetic parameters of carbon formation in process of methane decomposition on the zeolite - CoO mixture surface were investigated by method of thermo-gravimetric analysis. The morphology and structure of formed carbon fibrils, with the metal particles fixed at their ends, have been investigated, the formation of branched carbon fibrils pattern, so called octopus, being found. Also, the walnut shells and grape kernel carbonization, their immobilization by the cells of selective absorption of heavy metal and sulfur dioxide ions have been studied. The example of metal-carbon composites used as adsorbents for wastewater purification, C$_3$- C$_4$ hydrocarbon cracking catalysts and refractory materials with improved properties have been considered.

  • PDF

Removal of Pollutants and Recovery of Toxic Heavy Metals from Wastewater Using Microporous Hollow Fiber Modules

  • Yun, Chang-Han
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.25-27
    • /
    • 1993
  • Multiphase equilibrium-based processes for separation and purification generally utilize dispersed systems in which one phase is dispersed in the other as bubbles or drops or thin films. Using microporous membranes, novel techniques have been developed such that multiphase processes can now be carried out in a nondispersive fashion for gas-liquid (Sirkar, 1992) and liquid-liquid (Prasad and Sirkar, 1992) contacting processes. Among such processes, only nondispersive solvent extraction of pollutants using microporous membranes will be of concern here. These processes employ immobilized immiscible phase interfaces at the pore mouths in a microporous membrane. Through such interfaces, solutes are extracted into the solvent as two immiscible phases flow on two sides of a microporous membrane. Many advantages of such a technique over conventional dispersion-based extractors have been summarized (Prasad and Sirkar, 1992).

  • PDF