• Title/Summary/Keyword: Waste wood

Search Result 320, Processing Time 0.023 seconds

A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop (철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구)

  • Son, Woohwa;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.59-66
    • /
    • 2012
  • In this study, it was sampling from heavy metal-contaminated soil with the waste in railroad workshop. And, the pollution concentration and analysis of particle-size distribution were conducted to design efficient purification process that it was aimed at high contaminated area, low contaminated area and samples containing waste foundry sand. But, it was the other signs of general soil contamination, as construction waste of waste concrete and waste wood, waste foundry sand, incinerator ash, etc is overall buried on the grounds. Thus, the common heavy metal purification technology has not decreased the pollution. However, heavy-metal contamination was reduced by magnetic separation utilizing the magnetic component of the mixed waste.

Effect of Moulding Conditions on Properties of Table Top for Student Desk Manufactured by Wood Waste Materials (폐기 목질 재료로 제조한 학생용 책상 천판의 성능에 미치는 성형조건의 영향)

  • Roh, Jeang-Kwan;Kim, Jae-Kyung;Kim, Sa-Ick;Jo, Jong-Soo;Yoon, Seung-Lak;Ra, Jong-Bum;Do, Jeong-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.106-113
    • /
    • 2002
  • This research was performed to investigate the effect of moulding conditions on properties of the table top for student desk manufactured by wood waste materials. The table top manufactured using the mat mixed properly with fine particles and coarse particles generally showed better physical properties than those manufactured using either fine particles or coarse particles did/ Especially, highest performance for overlaying was observed when fine particles were used for face layer and coarse particles were used for core layer. The internal bond (IB) strength, the bending strength and thickness swelling increased with the increase of density. Most of physical properties were improved with the increase of hot pressing temperature. The best physical properties were found at 190℃ when the first hot pressing and the second hot pressing times were two minutes. However, the effect of the second hot pressing time of two minutes on the physical properties was not markedly different from that of one minute. This result suggests that the second hot pressing time of one minute is enough to increase the productivity in manufacturing the table top with the least decrease of the physical properties.

Development of Urethane Foams for Planting Media from Woodwastes (목질폐재를 이용한 식물식재용 우레탄폼의 개발)

  • Cho, Nam-Seok;Seo, Won-Sung;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.43-49
    • /
    • 1998
  • The availability of large quantities of waste woods provides an impetus for investigating woody biomass potential uses. Polyurethane (PU) foams are prepared with reacting isocyanates and polyols, and are used. in various industry fields. Thus, lignocellulosic waste raw-materials are proposed as replacement for synthetic polyol to PU foam formulation. In this study PU foams were manufactured from liquefied woods, methanediisocyanate(MDI), catalyst, foaming stabilizer, and viscosity aids. The polyol content, isocyanate.hydroxyl group (NCO/OH) ratio, and water content were varied to evaluate their effects on the foaming and water absorption of the PU foams. Less than 400 Molecular weight. of polyethylene glycol(PEG) and 1 to 3 solvent to woody raw-material ratio were desirable for liquefying woody materials. Liquefying rate was increased with more than 3 % addition of inorganic and organic catalysts and raising reaction temperature more than $150^{\circ}C$. Addition of starch enhanced liquefying of woody materials. Fourty percents of starch resulted in about 90% liquefying rates. Foaming rates were increased with increasing moisture contents of liquefied wood. Moisture contents of 0.6% resulted in 5 time-foaming rates, and seven percents of moisture contents more than 30 time-foaming rates. But, an increase in water content may result in a decrease in cross-links between wood polyol and isocyanate, because the NCO/OH ratio is constant. Increasing moisture contents have significantly decreased density of PU foams. The optimum water content should be about 2.5% or less in this adopted condition.

  • PDF

Properties of Clay-Woodceramics from 3 layers-clay-woodparticleboard (점토목재파티클보드로 제조된 Clay-Woodceramics의 성질)

  • Lee, Hwa Hyoung;Kim, Gwan Eui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.80-87
    • /
    • 2003
  • This research was carried out to examine physical and mechanical properties of clay-woodceramics which were carbonized for 3 hours in a special furnace from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol formaldehyde resin(hereafter PF, Non volatile content 52%, resin content 30%) and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. The results are summarized as follows: 1. The higher the carbonization temperature, the higher the dimensional shrinkage and the lower the carbonization yield ratio. But the higher the clay addition, the lower the dimensional shrinkage and the higher carbonization yield ratio. 2. The higher the carbonization temperature, the higher the water absorption and the density. The higher the clay content, the higher the density. 3. The higher the carbonization temperature, the higher the bending Modulus of Rupture and bending Modulus of Elasticity.

Studies on Development of Porosity in Carbon from Different Types of Bio-wastes

  • Manocha, Satish M.;Chauhan, Vanraj B.;Manocha, L.M.
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • The regional bio-wastes available in abundance in India were converted into porous carbon by heat treatment at different temperatures from $650-950^{\circ}C$. The wood retain shapes after pyrolysis though shrinkage occured both in axial and radial directions. The shrinkage in radial direction was found to be more than in axial direction in all woods. The density of woods and chars from these at a given temperature has been found to follow linear relationship. Chars were steam activated at temperature $700-800^{\circ}C$ for different times between 45-240 min. Both the temperature and time of activation with steam has a profound effect on surface area. Chars from softwoods like bagasse and castor oil plant were activated at lower temperature, i.e. $700-750^{\circ}C$ whereas hard wood chars have to be activated at higher temperature around $800^{\circ}C$. The morphology of wood as well as of chars has been studied by SEM. The comparison of the two showed that the nature of porosity in chars depends on precursor morphology, nature and physical state of wood and presence of inorganic compounds in the wood. Hard wood results in cross inter connected pores while softwood leads to fibriller structure. The present studies show that activated carbon with reasonably good surface area (${\sim}1000m^2/gm$) can be prepared from soft wood bio-wastes like bagasse and castor oil plant, while surface area ${\sim}1370m^2/gm$ was achieved from hard wood bio waste of pine wood.

  • PDF

A Study on the Promotion of Combustible Construction Waste Recycling (가연성 건설폐기물의 자원화 제고를 위한 방안)

  • Park, Ji-Sun;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The current enforce decree of "The Act on the Promotion of Construction Waste Recycling" divides seventeen kinds of construction wastes by property and configuration. Mixed construction waste, one of them classified by the enforce decree, is composed two more than justified construction wastes except refuse soil and rock. In construction wastes justified by enforce decree of this law, most refuse concrete and asphalt concrete of construction wastes are recycled. As well as refuse metal is separated, sorted from bulk them, and merchandised for value. Finally this is used the secondary manufactured products. Even though combustible construction wastes like refuse wood, plastics, fiber can be recycled RDF(Refuse derived fuel) or RPF(Refuse plastic fuel) because of high caloric value and low heavy metal but most of them are discharged as mixed construction waste and then treated by treated by incineration and landfill. Therefore, to control construction waste flow efficiently, construction wastes are classifies first combustible, incombustible, mixed combustible, incombustible and etc. in this study. The combustible waste is consisted refuse wood, plastics, fiber and etc. and incombustible waste contains refuse concrete, asphalt, and etc. Mixed construction is construction waste that can not separate from mixed waste bulk with different kinds.

  • PDF

Characterization of Carboxylated Cellulose Nanocrystals from Recycled Fiberboard Fibers Using Ammonium Persulfate Oxidation

  • KHANJANZADEH, Hossein;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.231-244
    • /
    • 2020
  • As a way of finding value-added materials from waste medium density fiberboard (MDF), this study characterized cellulose nanocrystals (CNCs) isolated by ammonium persulfate (APS) oxidation using recycled MDF fibers. Chemical composition of the recycled MDF fibers was done to quantify α-cellulose, hemicellulose, lignin, nitrogen, ash and extractives. The APS oxidation was performed at 60 ℃ for 16 h, followed by ultrasonication, which resulted in a CNC yield of 11%. Transmission electron microscope images showed that rod-like CNCs had an average length and diameter of 167±47 nm and 8.24±2.28 nm, respectively, which gave an aspect ratio of about 20. The conductometric titration of aqueous CNCs suspension resulted in a carboxyl content of 0.24 mmol/g and the degree of oxidation was 0.04. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy clearly showed the presence of carboxyl group on the CNCs prepared by the APS oxidation. The change of pH of the aqueous CNC suspension from 4 to 7 converted the carboxyl group to sodium carboxylate group. These results showed that the APS oxidation was facile and CNCs had a one-step preparation method, and thus suggested an optimization of the oxidation condition in future.

Some Physical and Chemical Properties of Carbonized Wood Wastes(II)

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.6-15
    • /
    • 1998
  • A total of forty five-ply, 30- by 30-cm lauan and larch plywood sheets were manufactured in the laboratory using commercial urea and phenol resin adhesives; half of these sheets were treated with fresh concrete. Each sheet was carbonized for 2, 4, and 6hours at $400^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$, respectively, and their physical properties were measured. The yie1d of charcoal decreased as carbonization temperature and time increased. Charcoal yield was greater in plywood than in veneer, and slightly greater in plywood treated with concrete compared to untreated plywood. Plywood manufactured with phenol resin adhesive had higher pH, higher equilibrium moisture content (EMC), and greater adsorption of methylene-blue dye compared to plywood manufactured with urea resin. For concrete-treated plywood, pH was greater than 10 even when the sheets were carbonized for 2hours at $400^{\circ}C$. Although the EMC of the phenol resin plywood was higher than that of the urea resin plywood, EMC of the phenol resin was lower than that of the urea resin. The larch phenol resin plywood that was carbonized for 6 hours at $750^{\circ}C$ adsorbed more methylene-blue than did the commercia1 wood-based activated charcoal as a result of total pore volume and surface area.

  • PDF

Exploring Reliability of Wood-Plastic Composites: Stiffness and Flexural Strengths

  • Perhac, Diane G.;Young, Timothy M.;Guess, Frank M.;Leon, Ramon V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.2
    • /
    • pp.153-173
    • /
    • 2007
  • Wood-plastic composites (WPC) are gaining market share in the building industry because of durability/maintenance advantages of WPC over traditional wood products and because of the removal of chromated copper arsenate (CCA) pressure-treated wood from the market. In order to ensure continued market share growth, WPC manufacturers need greater focus on reliability, quality, and cost. The reliability methods outlined in this paper can be used to improve the quality of WPC and lower manufacturing costs by reducing raw material inputs and minimizing WPC waste. Statistical methods are described for analyzing stiffness (tangent modulus of elasticity: MOE) and flexural strength (modulus of rupture: MOR) test results on sampled WPC panels. Descriptive statistics, graphs, and reliability plots from these test data are presented and interpreted. Sources of variability in the MOE and MOR of WPC are suggested. The methods outlined may directly benefit WPC manufacturers through a better understanding of strength and stiffness measures, which can lead to process improvements and, ultimately, a superior WPC product with improved reliability, thereby creating greater customer satisfaction.

  • PDF

Chemical Structure of Ozonized Waste Cooking Oil and Wood Bonding Strengths of Reaction Products with pMD (오존 처리한 폐식용유의 화학구조와 pMDI로 제조한 접착제의 목재 접착강도)

  • Kang, Chan-Young;Lee, Eung-Su;Ryu, Jae-Yun;Lee, Hyun-Jong;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.316-322
    • /
    • 2010
  • The research attempted to develop a wood adhesive based on waste cooking oil, using ozonification technology for the chemical structure modification. The waste cooking oil (WCO) was reacted with $O_3$ for different times; 1 h, 2 h, and 3 h. The chemical structure modifications of the ozonized WCOs were examined by Fourier transform Infrared (FT-IR) spectrum. The FT-IR spectrum of WCO had an absorbance peak at 3,010 $cm^{-1}$ that was the characteristic peak of the unsaturated double bonds. As ozone treatment time increased, the peak of the double bond was disappeared and carboxyl peak appeared at 1,700 $cm^{-1}$. Especially, the double bond of 3 hrs-ozonized WCO was vanished almost. In results of the dry bonding strengths of the 3 hrs-ozonized WCO mixed with polymeric methylene diphenyl diisocyanate (pMDI) were the strengths of weight ratio of 3hrs-ozonized WCO : pMDI, 1 : 0.5, 8.08 kgf/$cm^2$, 1 : 0.75, 9.53 kgf/$cm^2$ 1 : 1, 44.16 kgf/$cm^2$, 1 : 2, 58.08 kgf/$cm^2$, 1 : 3, 61.41 kgf/$cm^2$, and 1 : 4, 46.95 kgf/$cm^2$. Therefore, it was found that the optimum equivalent ratio was formed at the ratio of 1 : 2 or 1 : 3. Under wetting the bonding strength of 1 : 3 ratio was appeared higher than that of 1 : 2 ratio, while the results obtained from hot-water and cyclic boiling shear test were similar.