Browse > Article
http://dx.doi.org/10.5658/WOOD.2020.48.2.231

Characterization of Carboxylated Cellulose Nanocrystals from Recycled Fiberboard Fibers Using Ammonium Persulfate Oxidation  

KHANJANZADEH, Hossein (Department of Wood and Paper Science, Kyungpook National University)
PARK, Byung-Dae (Department of Wood and Paper Science, Kyungpook National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.48, no.2, 2020 , pp. 231-244 More about this Journal
Abstract
As a way of finding value-added materials from waste medium density fiberboard (MDF), this study characterized cellulose nanocrystals (CNCs) isolated by ammonium persulfate (APS) oxidation using recycled MDF fibers. Chemical composition of the recycled MDF fibers was done to quantify α-cellulose, hemicellulose, lignin, nitrogen, ash and extractives. The APS oxidation was performed at 60 ℃ for 16 h, followed by ultrasonication, which resulted in a CNC yield of 11%. Transmission electron microscope images showed that rod-like CNCs had an average length and diameter of 167±47 nm and 8.24±2.28 nm, respectively, which gave an aspect ratio of about 20. The conductometric titration of aqueous CNCs suspension resulted in a carboxyl content of 0.24 mmol/g and the degree of oxidation was 0.04. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy clearly showed the presence of carboxyl group on the CNCs prepared by the APS oxidation. The change of pH of the aqueous CNC suspension from 4 to 7 converted the carboxyl group to sodium carboxylate group. These results showed that the APS oxidation was facile and CNCs had a one-step preparation method, and thus suggested an optimization of the oxidation condition in future.
Keywords
recycled fiber; cellulose nanocrystals; carboxylation; ammonium persulfate oxidation;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Foster, E.J., Moon, R.J., Agarwal, U.P., Bortner, M.J., Bras, J., Camarero-Espinosa, S., Chan, K.J., Clift, M.J.D., Cranston, E.D., Eichhorn, S.J., Fox, D.M., Hamad, W.Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K.J., Reid, M.S., Renneckar, S., Roberts, R., Shatkin, J.A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N., Youngblood, J. 2018. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews 47: 2609-2679.   DOI
2 Goh, K.Y., Ching, Y.C., Chuah, C.H., Abdullah, L.C., Liou, N.S. 2016. Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23: 379-390.   DOI
3 Gu, J., Hu, C., Zhong, R., Tu, D., Yun, H., Zhang, W., Leu, S.Y. 2017. Isolation of cellulose nanocrystals from medium density fiberboards. Carbohydrate Polymer 167: 70-78.   DOI
4 Gwon, J.G., Lee, D.B., Cho, H.J., Lee, S.Y. 2018. Preparation and characteristics of cellulose acetate-based nanocomposites reinforced with cellulose nanocrystals (CNCs). Journal of the Korean Wood Science and Technology. 46: 565-576.   DOI
5 Haeldermans, T., Claesen, J., Maggen, J., Carleer, R., Yperman, J., Adriaensens, P., Samyn, P., Vandamme, D., Cuypers, A., Vanreppelen, K., Schreurs, S. 2019. Microwave assisted and conventional pyrolysis of MDF: Characterization of the produced biochars. Journal of Analytical and Applied Pyrolysis 138: 218-230.   DOI
6 Hafemann, E., Battisti, R., Marangoni, C., Machado, R.A.F. 2019. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals. Carbohydrate Polymer 218: 188-198.   DOI
7 Han, J.S., Rowell, J.S. 2008. Chemical Composition of Fibers. Cellulose 283: 83-134.
8 Hong, M.K., Lubis, M.A.R., Park, B.D., Sohn, C.H., Roh, J. 2018. Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Material Science & Engineering 0:1-9.
9 Hu, Y., Tang, L., Lu, Q., Wang, S., Chen, X., Huang, B. 2014. Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21(3): 1611-1618.   DOI
10 Jiang, H., Wu, Y., Han, B., Zhang, Y. 2017. Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydrate Polymer 174: 291-298.   DOI
11 Ju, S.G. Roh, J.K. 2017. Manufacture of dyed recycling wood fiber using waste MDF. Journal of the Korean Wood Science and Technology. 45(3): 297-307.   DOI
12 Khanjanzadeh, H., Behrooz, R., Bahramifar, N., Gindl-Altmutter, W., Bacher, M., Edler, M., Griesser, T. 2018. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. International Journal of Biological Macromolecules 106: 1288-1296.   DOI
13 Karade, S.R. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials 24(8): 1323-1330.   DOI
14 Kim, A.R., Kim, N.H. 2019. Effect of heat treatment and particle size on the crystalline properties of wood cellulose. Journal of the Korean Wood Science and Technology 47(3): 299-310.   DOI
15 Liu, Y., Liu, L., Wang, K., Zhang, H., Yuan, Y., Wei, H., Wang, X., Duan, Y., Zhou, L., Zhang, J. 2019. Modified Ammonium Persulfate Oxidations for Efficient Preparation of Carboxylated Cellulose Nanocrystals. Carbohydrate Polymer 229: 115572   DOI
16 Krause, K.C., Sauerbier, P., Koddenberg, T., Krause, A. 2018. Utilization of recycled material sources for wood-polypropylene composites: Effect on internal composite structure, particle characteristics and physico-mechanical properties. Fibers 6(4): 86   DOI
17 Lam, E., Leung, A.C.W., Liu, Y., Majid, E., Hrapovic, S., Male, K.B., Luong, J.H.T. 2013. Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustainable Chemistry & Engineering 1: 278-283.   DOI
18 Lee, M., Prewitt, L., Mun, S.P. 2015. Environmental assessments of leachate from medium density fiberboard in a simulated landfill. Journal of the Korean Wood Science and Technology 43: 548-557.   DOI
19 Lee, M., Prewitt, L., Mun, S.P. 2014. Formaldehyde release from medium density fiberboard in simulated landfills for recycling. Journal of the Korean Wood Scienceand Technology 42: 597-604.   DOI
20 Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, J.H.T. 2011. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7: 302-305.   DOI
21 Madsen, B., Ganstedt, E. K. 2013. Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Advances in Materials Science and Engineering, ID 564346, doi:10.1155/2013/564346.
22 Park, K.S., Kang, H.K., Park, S.H., Jung, S.C., Jeon, J.K., Lee, I.G., Kim, S.C., Park, Y.K. 2013. Conversion of waste medium density fiberboard over SAPO-11 catalyst. Journal of Nanoelectronics and Optoelectronics 8(6): 561-564.   DOI
23 Mascheroni, E., Rampazzo, R., Ortenzi, M.A., Piva, G., Bonetti, S., Piergiovanni, L. 2016a. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1): 779-793.   DOI
24 Nascimento, D.M. d., Almeida, J.S., Vale, M. do S., Leitao, R.C., Muniz, C.R., Figueiredo, M.C.B. d., Morais, J.P.S., Rosa, M. de F. 2016. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Industrial Crops and Products 93: 66-75.   DOI
25 Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R. 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering 75: 176-200.   DOI
26 Oun, A.A., Rhim, J.W. 2017. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydrate Polymer 174: 484-492.   DOI
27 Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of the Korean Wood Scienceand Technology 42: 119-129.   DOI
28 Rampazzo, R., Alkan, D., Gazzotti, S., Ortenzi, M.A., Piva, G., Piergiovanni, L. 2017. Cellulose Nanocrystals from Lignocellulosic Raw Materials, for Oxygen Barrier Coatings on Food Packaging Films. Packaging Technology and Science 30: 645-661.   DOI
29 Saito, T., Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5: 1983-1989.   DOI
30 Robles, E., Urruzola, I., Labidi, J., Serrano, L. 2015. Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Industrial Crops and Products 71: 44-53.   DOI
31 Zaini, L.H., Febrianto, F., Wistara, I.N.J., Marwanto, N., Maulana, M.I., Lee, S.H., Kim, N.H. 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Scienceand Technology 47: 597-606.
32 Seo, Y.R., Kim, B.J. Lee, S.Y. 2019. Effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of recycled WPCs. Journal of the Korean Wood Science and Technology 47(4): 472-485.   DOI
33 Shang, T.X., Zhang, M.Y., Jin, X.J. 2014. Easy procedure to prepare nitrogen-containing activated carbons for supercapacitors. RSC Advances 4: 39037-39044.   DOI
34 Ye, S., Yu, H.Y., Wang, D., Zhu, J., Gu, J. 2018. Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose 25: 5139-5155.   DOI
35 Zhang, K., Sun, P., Liu, H., Shang, S., Song, J., Wang, D. 2016. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydrate Polymer 138: 237-243.   DOI
36 Cheng, M., Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., Zhu, M. 2014. Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. Journal of Materials Chemistry A 2: 251-258.   DOI
37 Aslan, D.I., Ozogul, B., Ceylan, S., Geyikci, F. 2018. Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis. Bioresource Technology 258: 105-110.   DOI
38 Azambuja, R. da R., de Castro, V.G., Trianoski, R., Iwakiri, S. 2018. Recycling wood waste from construction and demolition to produce particleboards. Maderas: Ciencia y Tecnologia 20: 681-690.
39 Bashar, M.M., Zhu, H., Yamamoto, S., Mitsuishi, M. 2019. Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26: 3671-3684.   DOI
40 Castro-Guerrero, C.F., Gray, D.G. 2014. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21: 2567-2577.   DOI
41 Cho, M., Park, B.D., Kadla, J.F. 2012. Characterization of electrospun nanofibers of cellulose nanowhisker/polyvinyl alcohol composites. Journal of the Korean Wood Science and Technology 40: 71-77.   DOI
42 Couret, L., Irle, M., Belloncle, C., Cathala, B. 2017. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose 24(5): 2125-2137.   DOI
43 El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C., Barakat, A. 2018. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. International Journal of Biological Macromolecules 106: 681-691.   DOI
44 Fortunati, E., Benincasa, P., Balestra, G.M., Luzi, F., Mazzaglia, A., Del Buono, D., Puglia, D., Torre, L. 2016. Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA-CH nanocomposites. Industrial Crops and Products 92: 201-217.   DOI