• 제목/요약/키워드: Waste products

검색결과 983건 처리시간 0.027초

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

연소로 열유동 해석 방식과 결과 분석에 대한 고찰;화격자식 소각로의 사례 (Discussion on the Practical Use of CFD for Furnaces;A Case of Grate Type Waste Incinerators)

  • 류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.85-94
    • /
    • 2002
  • Computational flow dynamics(CFD) has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Though it needs many simplifications and complicated flow models, the reasonability of its results is not fully evaluated. For example, the inlet condition is calculated from an arbitrarily assumed properties of combustion gas release from the waste bed, since the combustion in the bed is difficult to be predicted. In this study, the computational modeling and calculation procedures of CFD for the grate type waste incinerator were evaluated using comparative simulations. Though the assumption method on the generation of the combustion gas directly affected the temperature and gas species concentrations, the overall flow pattern was dominated by the secondary air jets. The gaseous reaction could be included by assuming the release of the products of incomplete combusion from the bed. However, the reaction effficiency cannot not be directly evaluated from the species concentration, since it is not possible to simulate the actual co-existence of fuel rich or oxygen rich puffs over the bed. In predicting the turbulence, the higher order model, such as Reynolds stress model, gave difference shape of local recirculation zones, but similar results was acquired from the standard $k-{\varepsilon}$ model. Introducing radiation model was required for accurate temperature prediction, but it also caused heat imbalance due to the fixed temperature of the inlet, i.e. the waste bed. Thus, the computational modeling procedures on incinerators and the analysis of the predicted results should be progressed carefully. Though not validated experimentally, current simulation method is capable of comparative evaluation on the flow-related parameters such as the furnace shape and secondary air injection using identical inlet conditions. Quantitative analysis using measures of the residence time and mixing is essential to compare the flow performance efficiently.

  • PDF

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant

  • Lee, Gi Na;Choi, So Young;Na, Jonguk;Youn, HaJin;Jang, Yu-Sin
    • KSBB Journal
    • /
    • 제29권6호
    • /
    • pp.399-404
    • /
    • 2014
  • Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.

폐기물 저감·재활용·에너지화 기술의 R&D 투자 현황 분석 (Analysis of R&D investment of waste reduce, recycle and energy recovery technology)

  • 홍정석;김형건
    • 에너지공학
    • /
    • 제21권3호
    • /
    • pp.315-324
    • /
    • 2012
  • 폐기물 저감 재활용 에너지화 기술은 27대 중점 녹색기술 중 하나로, 2012년까지 정부 R&D 투자가 증가해야 함에도 불구하고, 2008년~2010년 기간 동안 연평균 증가율이 오히려 감소하였다. 이에 따라 동 분야의 정부 R&D 투자 현황을 상세히 분석하였고, 그 결과 총 정부 R&D 투자는 감소하였지만, 동 분야에서 정의하는 전략제품 서비스 기술에 대한 투자는 증가하고 집중화 되는 추세로 나타나 투자의 질적인 측면은 양호했다고 판단된다. 특히 2010년에는 전략제품 서비스 기술 중 3개 기술군((1) 폐기물 에너지화설비, (2) 폐기물자원순환시설, (3) 폐기물기반 물질생산시설)의 비중이 24 ~ 28%로 비교적 균등하게 투자되어, 정부 R&D 투자는 질적으로 적절했다고 판단되어 진다. 이러한 분석틀은 향후 녹색기술 R&D 정책 추진점검에서 활용할 수 있을 것이다.

고강도 콘크리트의 내화성능 용도에 따른 FRP재활용 공정 개발 (Development of FRP Recycling Process for Regenerating Applications of Fire Resistance Performance of High Strength Concrete)

  • 이승희;박종원;윤구영
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권3호
    • /
    • pp.207-215
    • /
    • 2015
  • 환경문제를 야기시켰던 해상용 FRP재활용에 대해 지난 10여 년간 다양한 국가적 지원이 이루어져서 폐FRP로부터 콘크리트 강화용 섬유 제작이 진행되어 왔다. 이렇게 제작된 강화 콘크리트에 대해 구조적 능력까지 시험한 바 있다. 시험 테스트 결과 재활용 FRP 가루를 사용한 콘크리트는 고강도 콘크리트의 압축강도를 감소시키지 않았을 뿐 만 아니라, 고강도 콘크리트의 내폭 특성을 상당히 증대시켰다. 그러나 폐FRP로부터 매트층의 분리 방법이 안정화되지 않았기 때문에 폐FRP 섬유 가루의 특성에 대한 연구는 종결되지 않았다. 본 연구는 폐FRP로부터 매트층을 분리하는 효과적이며 친환경적인 새로운 방법에 관한 것이며, 이것은 내폭성이 강한 제품이나 구조물에 적합한 FRP섬유가루 생산 공정에 유용한 재활용 공정이라 생각한다.

지역적 지속가능성의 실천으로서의 업사이클링 패션디자인 개발 - 동대문구 창신동을 중심으로 - (Developing upcycled fashion design for regional sustainability - Focusing on Changshin-dong area -)

  • 임은혁;김현정;범서희
    • 복식문화연구
    • /
    • 제26권2호
    • /
    • pp.140-156
    • /
    • 2018
  • The purpose of this study is to review and establish the three concepts of upcycling, zero-waste fashion design, and regional sustainability through a review of domestic and international case studies. Furthermore, it will provide the theoretical basis for using upcycling as a regional sustainability practice to create zero-waste fashion design. To conduct an empirical study, we systematized the stages of the survey on waste resources in Changsin-dong, the sourcing and utilization of waste resources, the design-planning stage, and the co-production with pattern and sewing masters as a suggested practice for regional sustainability. Through this study, we propose the possibility of regional sustainability by developing and sharing the method of zero-waste fashion design. The conclusion of the study as follows: First, upcycling fashion designs can be extended to a regional sustainability practice by taking the characteristics of social design into account. Second, by providing a design development process and methodology suitable for regional sustainability application, it is helpful to revitalize regional upcycling fashion brands and communities by providing data for upcycled fashion branding. Third, as part of the revitalization project for the Chang-shin and Soongin areas that started in 2014, using the region's economic, cultural, and environmental characteristics to make and sell high-value, upcycled fashion products will contribute to social and economic achievements and aid in solving regional problems.

Characterisation and Co-pyrolytic Degradation of the Sawdust and Waste Tyre Blends to Study the Effect of Temperature on the Yield of the Products

  • Shazali, Erna Rashidah Hj;Morni, Nurul Afiqah Haji;Bakar, Muhammad Saifullah Abu;Ahmed, Ashfaq;Azad, Abul K;Phusunti, Neeranuch;Park, Young-Kwon
    • 공업화학
    • /
    • 제32권2호
    • /
    • pp.205-213
    • /
    • 2021
  • The present study aimed to determine the effect of co-pyrolysis of sawdust biomass and scrap tyre waste employing different blending ratios of sawdust to waste tyre such as 100:0, 75:25, 50:50, 25:75, and 0:100. The thermochemical characterization of feedstocks was carried out by employing the proximate, ultimate analysis, and thermogravimetric (TGA) analyses, calorific values, and scanning electron microscope coupled with energy dispersive x-ray analysis (SEM-EDX) to select the blending ratio having better bioenergy potential amongst the studied ratios. The blending ratio of 25:75 (sawdust to waste tyre) was selected for the co-pyrolysis study in a fixed-bed pyrolysis reactor system based on its solid biofuels properties such as heating value (30.18 MJ/kg), and carbon (71.81 wt%) and volatile matter (63.82 wt%) contents. The pyrolysis temperatures were varied as 500, 600 and 700 ℃ while the other parameters such as heating rate and nitrogen flowrate were maintained at 30 ℃/min and 0.5 L/min respectively. The bio-oil yields as 31.9, 47.1 and 61.2 wt%, bio-char yields as 34.5, 34.2 and 31.4 wt% and gaseous product yields as 33.6, 18.60 and 7.3 wt% at the pyrolysis temperatures of 500, 600 and 700 ℃ respectively were obtained. The blends of sawdust and waste tyres showed the improved energy characteristics which could provide the solution for the beneficial management of sawdust and scrape tyre wastes via co-pyrolysis processing.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구 (A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process)

  • 채병만;이석환;김득현;서은주;김현일;이승환;이상우
    • 청정기술
    • /
    • 제26권2호
    • /
    • pp.116-121
    • /
    • 2020
  • 본 연구에서는 유가금속 회수를 한 전기차 폐배터리 부산물의 재활용에 관하여 연구하였다. 폐배터리 부산물에는 희토류들이 남아있으나, 부산물의 형태로는 소재로서의 가치가 없기에 정제과정을 거쳐 희토류 산화물로 회수하였다. 희토류침전분말 형태의 부산물을 30% 수산화나트륨을 이용하여 가공이 편한 수산화물로 변환한 뒤, 옥살산의 용해도 차이를 이용하여 남아 있는 불순물을 정제한 뒤, D2EHPA (Di-(2-ethylhexyl) phosphoric acid)를 사용하여 이트륨을 분리하였다. 과망가니즈산 칼륨을 이용하여 세륨을 분리 후, PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester)를 사용하여 란타넘과 네오디뮴을 분리하였다. 그 후 800 ℃의 온도에서 소성하여 란타넘, 네오디뮴 산화물로 재생하는 방법을 확인하였다.

폐(廢)알칼리의 재활용(再活用) 현황(現況) 및 관리(管理) 방안(方案) (Present Condition on the Recycling and Management for Waste Alkali)

  • 심연주;김의용
    • 자원리싸이클링
    • /
    • 제19권4호
    • /
    • pp.13-18
    • /
    • 2010
  • 세계 각국은 폐기물의 발생과 이의 처리를 위해 많은 노력을 기울이고 있다. 폐기물 중 특히 폐알칼리는 부식성으로 인해 환경오염에 대한 위험성이 높기 때문에 효율적 관리를 통해 재활용되어야 하며, 이를 위해 재활용 생성물에 대한 품질기준에 따라 관리될 필요가 있다. 그러나 현재 품질관리가 필요한 대상물질에 대한 국내 자료가 전혀 없다. 따라서 본 연구에서는 최근 5년간의 자료 분석과 현장방문을 통해 체계적인 관리가 필요한 폐알칼리 재활용 대상물질을 선정하였다. 그 결과 재활용 대상 주요물질은 가성소다, 황산알루미늄, 폴리염화알루미늄인 것으로 나타났다. 장차 국가적 차원에서 이들 주요물질에 대한 적절한 관리체계가 구축될 필요가 있는 것으로 판단되며, 이를 통하여 폐기물의 자원화 뿐 아니라 우리 주변의 환경오염을 막는 긍정적인 효과가 있을 것으로 기대된다.