Browse > Article
http://dx.doi.org/10.14478/ace.2020.1110

Characterisation and Co-pyrolytic Degradation of the Sawdust and Waste Tyre Blends to Study the Effect of Temperature on the Yield of the Products  

Shazali, Erna Rashidah Hj (Faculty of Integrated Technologies, Universiti Brunei Darussalam)
Morni, Nurul Afiqah Haji (Faculty of Integrated Technologies, Universiti Brunei Darussalam)
Bakar, Muhammad Saifullah Abu (Faculty of Integrated Technologies, Universiti Brunei Darussalam)
Ahmed, Ashfaq (School of Environmental Engineering, University of Seoul)
Azad, Abul K (Faculty of Integrated Technologies, Universiti Brunei Darussalam)
Phusunti, Neeranuch (Department of Chemistry, Faculty of Science, Prince of Songkla University)
Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
Publication Information
Applied Chemistry for Engineering / v.32, no.2, 2021 , pp. 205-213 More about this Journal
Abstract
The present study aimed to determine the effect of co-pyrolysis of sawdust biomass and scrap tyre waste employing different blending ratios of sawdust to waste tyre such as 100:0, 75:25, 50:50, 25:75, and 0:100. The thermochemical characterization of feedstocks was carried out by employing the proximate, ultimate analysis, and thermogravimetric (TGA) analyses, calorific values, and scanning electron microscope coupled with energy dispersive x-ray analysis (SEM-EDX) to select the blending ratio having better bioenergy potential amongst the studied ratios. The blending ratio of 25:75 (sawdust to waste tyre) was selected for the co-pyrolysis study in a fixed-bed pyrolysis reactor system based on its solid biofuels properties such as heating value (30.18 MJ/kg), and carbon (71.81 wt%) and volatile matter (63.82 wt%) contents. The pyrolysis temperatures were varied as 500, 600 and 700 ℃ while the other parameters such as heating rate and nitrogen flowrate were maintained at 30 ℃/min and 0.5 L/min respectively. The bio-oil yields as 31.9, 47.1 and 61.2 wt%, bio-char yields as 34.5, 34.2 and 31.4 wt% and gaseous product yields as 33.6, 18.60 and 7.3 wt% at the pyrolysis temperatures of 500, 600 and 700 ℃ respectively were obtained. The blends of sawdust and waste tyres showed the improved energy characteristics which could provide the solution for the beneficial management of sawdust and scrape tyre wastes via co-pyrolysis processing.
Keywords
Thermochemical characterisation; Co-pyrolysis; Sawdust; Waste tyre; Blending ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. S. Moogi, J. Jae, H. P. R. Kannapu, A. Ahmed, E. D. Park, and Y. K. Park, Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition, Bioresour. Technol., 315, 123835 (2020).   DOI
2 H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park, and Y. K. Park, Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons, Bioresour. Technol., 310, 123-135 (2020).
3 B. S. Kim, Y. M. Kim, H. W. Lee, J. Jae, D. H. Kim, S. C. Jung, C. Watanabe, and Y. K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustain. Chem. Eng., 4, 1354-1363 (2016).   DOI
4 A. Ahmed, M. S. Abu Bakar, R. Hamdani, Y. K. Park, S. S. Lam, R. S. Sukri, M. Hussain, K. Majeed, N. Phusunti, F. Jamil, and M. Aslam,Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications, Environ. Res., 186, 109596 (2020).   DOI
5 A. Abdullah, A. Ahmed, P. Akhter, A. Razzaq, M. Hussain, N. Hossain, M. S. Abu Bakar, S. Khurram, K. Majeed, and Y. K. Park, Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview, J. Clean. Prod., 287, 125047 (2021).   DOI
6 A. Ahmed, M. S. Abu Bakar, R. S. Sukri, M. Hussain, A. Farooq, S. Moogi, and Y.-K. Park, Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production, Energy Convers. Manag., 42, 541-556 (2020).
7 T. Chowdhury, H. Chowdhury, A. Ahmed, Y. K. Park, P. Chowdhury, N. Hossain, and S. M. Sait, Energy, exergy, and sustainability analyses of the agricultural sector in Bangladesh, Sustainability, 12, 4447-4460 (2020).   DOI
8 A. Ahmed, S. Hidayat, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and N. Phusunti, Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource, Biofuels, 12, 9-20 (2018).
9 A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and N. Phusunti, Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production, Energy Convers. Manag., 176, 393-408 (2018).   DOI
10 C. L. Williams, T. L. Westover, R. M. Emerson, J. S. Tumuluru, and C. Li, Sources of biomass feedstock variability and the potential impact on biofuels production, Bioenergy Res., 9, 1-12 (2016).   DOI
11 F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis, Polym. Degrad. Stab., 93, 90-98 (2008).   DOI
12 H. W. Lee, B. R. Jun, H. Kim, D. H. Kim, J. K. Jeon, S. H. Park, C. H. Ko, T. W. Kim, and Y. K. Park, Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites, Energy, 81, 33-40 (2015).   DOI
13 Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung, and Y. K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Conv. Manage., 149, 966-973 (2017).   DOI
14 S. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B. M. Gibbs, Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres, Bioresour. Technol., 100, 1413-1418 (2009).   DOI
15 D. Y. C. Leung and C. L. Wang, Kinetic modeling of scrap tire pyrolysis, Energy Fuels, 13, 421-427 (1999).   DOI
16 S. Syed, R. Qudaih, I. Talab, and I. Janajreh, Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data, Fuel, 90, 1631-1637 (2011).   DOI
17 S. Ucar and S. Karagoz, Co-pyrolysis of pine nut shells with scrap tires, Fuel, 137, 85-93 (2014).   DOI
18 M. Islam Miskat, A. Ahmed, M. S. Rahman, H. Chowdhury, T. Chowdhury, P. Chowdhury, S. M. Sait, and Y.-K. Park, An overview of the hydropower production potential in Bangladesh to meet the energy requirements, Environ. Eng. Res., 26, 200514 (2021).
19 A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and T. M. I. Mahlia, Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review, Renew. Sustain. Energy Rev., 82, 3060-3076 (2017).   DOI
20 A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future, Renew. Sustain. Energy Rev., 12, 593-661 (2008).   DOI
21 A. K. Varma, L. S. Thakur, R. Shankar, and P. Mondal, Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products, Waste Manag., 89, 224-235 (2019).   DOI
22 M. Haris Hamayun, M. Hussain, I. Shafiq, A. Ahmed, and Y.-K. Park, Investigation of the thermodynamic performance of anexisting steam power plant via energy and exergy analysesto restrain the environmental repercussions: A simulationstudy, Environ. Eng. Res., 27, 200683 (2022).   DOI
23 J. Y. Kim, H. W. Lee, S. M. Lee, J. Jae, and Y. K. Park, Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals, Bioresour. Technol., 279, 373-384 (2019).   DOI
24 E. H. Lee, R. Park, H. Kim, S. H. Park, S. C. Jung, J. K. Jeon, S. C. Kim, and Y. K. Park, Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials, J. Ind. Eng. Chem., 37, 18-21 (2016).   DOI
25 D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, Kinetic study on thermal decomposition of woods in oxidative environment, Fuel, 88, 1024-1030 (2009).   DOI
26 A. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, Pollutants from the combustion of solid biomass fuels, Prog. Energy Combust. Sci., 38, 113-137 (2012).   DOI
27 A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energy Combust. Sci., 30, 219-230 (2004).   DOI
28 M. S. Abu Bakar, A. Ahmed, D. M. Jeffery, S. Hidayat, R. S. Sukri, T. M. I. Mahlia, F. Jamil, M. S. Khurrum, A. Inayat, S. Moogi, and Y. K. Park, Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production, Bioresour. Technol., 318, 123913 (2020).   DOI
29 T. Chowdhury, H. Chowdhury, A. Ahmed, Y. K. Park, P. Chowdhury, N. Hossain, and S. M. Sait, Assessing the theoretical prospects of bioethanol production as a biofuel from agricultural residues in Bangladesh: A review, Sustainability, 12, 8583 (2020).   DOI
30 P. Energy Department, Prime Minist. Off. Brunei Darussalam, 44, 903-920 (2014).
31 A. K. Varma and P. Mondal, Physicochemical characterization and pyrolysis kinetics of wood sawdust, Energ. Source. Part A, 38, 2536-2544 (2016).   DOI
32 R. K. Singh, S. Mondal, B. Ruj, A. K. Sadhukhan, and P. Gupta, Interaction of three categories of tyre waste during co-pyrolysis: Effect on product yield and quality, J. Anal. Appl. Pyrolysis, 141, 104-418 (2019).
33 M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, and A. Balas, Progress in used tyres management in the European Union: A review, Waste Manag., 32, 1742-1751 (2012).   DOI
34 P. Danielle Galiani, J. Antonio Malmonge, B. Guenther Soares, and L. Henrique Capparelli Mattoso, Studies on thermal-oxidative degradation behaviours of raw natural rubber: PRI and thermogravimetry analysis, Plast. Rubber Compos., 42, 334-339 (2013).   DOI
35 Q. Li, F. Li, A. Meng, Z. Tan, and Y. Zhang, Thermolysis of scrap tire and rubber in sub/super-critical water, Waste Manag., 71, 311-324 (2018).   DOI
36 R. Murillo, E. Aylon, M. V. Navarro, M. S. Callen, A. Aranda, and A. M. Mastral, The application of thermal processes to valorise waste tyre, Fuel Process. Technol., 87, 143-147 (2006).   DOI
37 G. Lopez, R. Aguado, M. Olazar, M. Arabiourrutia, and J. Bilbao, Kinetics of scrap tyre pyrolysis under vacuum conditions, Waste Manag., 29, 2649 (2009).   DOI
38 S. S. Idris, N. A. Rahman, and K. Ismail, Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA), Bioresour. Technol., 123, 581-591 (2012).   DOI
39 M. J. Castaldi and E. Kwon, Thermo-gravimetric Analysis (TGA) of combustion and gasification of Styrene-Butadiene Copolymer (SBR), Proceedings of 13th Annual North American Waste to Energy Conference, January 01, North America (2005).
40 A. Quek and R. Balasubramanian, Mathematical modeling of rubber tire pyrolysis, J. Anal. Appl. Pyrolysis, 95, 1-12 (2012).   DOI
41 S. Seidelt, M. Muller-Hagedorn, and H. Bockhorn, Description of tire pyrolysis by thermal degradation behaviour of main components, J. Anal. Appl. Pyrolysis, 75, 16-18 (2006).
42 A. Quek and R. Balasubramanian, Liquefaction of waste tires by pyrolysis for oil and chemicals - A review, J. Anal. Appl. Pyrolysis, 101, 1-16 (2013).   DOI
43 E. L. K. Mui, D. C. K. Ko, and G. McKay, Production of active carbons from waste tyres - A review, Carbon, 42, 2789-2805 (2004).   DOI
44 L. Wang, H. Lei, S. Ren, Q. Bu, J. Liang, Y. Wei, Y. Liu, G. S. J. Lee, S. Chen, J. Tang, Q. Zhang, and R. Ruan, Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst, J. Anal. Appl. Pyrolysis, 98, 194-200 (2012).   DOI
45 E. Zanella, M. Della Zassa, L. Navarini, and P. Canu, Low-temperature co-pyrolysis of polypropylene and coffee wastes to fuels, Energy Fuels, 27, 1357-1364 (2013).   DOI
46 T. Chowdhury, H. Chowdhury, N. Hossain, A. Ahmed, M. S. Hossen, P. Chowdhury, M. Thirugnanasambandam, and R. Saidur, Latest advancements on livestock wastemanagement and biogas production: Bangladesh's perspective, J. Clean. Prod., 44, 122-138, (2020).
47 M. F. Laresgoiti, B. M. Caballero, I. De Marco, A. Torres, M. A. Cabrero, and M. J. Chomon, Characterization of the liquid products obtained in tyre pyrolysis, J. Anal. Appl. Pyrolysis, 71, 917-934 (2004).   DOI
48 S. Tanaka, S. Kano, J. Lat, W. M. Effendi, N. P. Tan, A. Arifin, K. Sakurai, and J. J. Kendawang, Effects of acacia mangium on morphological and physicochemical properties of soil, J. Trop. For. Sci., 27, 357-368 (2015).
49 H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781-1788 (2007).   DOI
50 F. Abnisa and W. M. A. Wan Daud, Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire, Energy Convers. Manag., 99, 334-345 (2015).   DOI
51 O. Sanahuja-Parejo, A. Veses, M. V. Navarro, J. M. Lopez, R. Murillo, M. S. Callen, and T. Garcia, Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels, Energy Convers. Manag., 171, 1202-1212 (2018).   DOI
52 F. Jamil, M. Aslam, A. H. Al-Muhtaseb, A. Bokhari, S. Rafiq, Z. Khan, A. Inayat, A. Ahmed, S. Hossain, M. S. Khurrum, and M. S. A. Bakar, Greener and sustainable production of bioethylene from bioethanol: Current status, opportunities and perspectives, Rev. Chem. Eng., 36, 2356-2386 (2020).
53 S. H. Ansari, A. Ahmed, A. Razzaq, D. Hildebrandt, X. Liu, and Y. Park, Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power, Environ. Pollut., 266, 103-117 (2020).
54 M. Z. Farooq, M. Zeeshan, S. Iqbal, N. Ahmed, and S. A. Y. Shah, Influence of waste tire addition on wheat straw pyrolysis yield and oil quality, Energy, 144, 200-206 (2018).   DOI
55 M. S. Hossain, M. R. Islam, M. S. Rahman, M. A. Kader, and H. Haniu, Biofuel from co-pyrolysis of solid tire waste and rice husk, Energy Procedia, 110, 453-458 (2017).   DOI
56 J. D. Martinez, A. Veses, A. M. Mastral, R. Murillo, M. V. Navarro, N. Puy, A. Artigues, J. Bartroli, and T. Garcia, Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel, Fuel Process. Technol., 119, 263-271 (2014).   DOI
57 L. Wang, M. Chai, R. Liu, and J. Cai, Synergetic effects during co-pyrolysis of biomass and waste tire: A study on product distribution and reaction kinetics, Bioresour. Technol., 268, 363-370 (2018).   DOI
58 J. Shen, S. Zhu, X. Liu, H. Zhang, and J. Tan, The prediction of elemental composition of biomass based on proximate analysis, Energy Convers. Manag., 51, 983-987 (2010).   DOI
59 C. H. Ko, S. H. Park, J. K. Jeon, D. J. Suh, and K. E. Jeong, Upgrading of biofuel by the catalytic deoxygenation of biomass, Korean J. Chem. Eng., 29, 1657-1665 (2012).   DOI
60 A. Abdullah, A. Ahmed, P. Akhter, A. Razzaq, M. Zafar, M. Hussain, N. Shahzad, K. Majeed, S. Khurrum, M. S. A. Bakar, and Y. K. Park, Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan, Korean J. Chem. Eng., 37, 1899-1906 (2020).   DOI
61 J. Alvarez, M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, and M. Olazar, Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres, Waste Manag., 85, 385-395 (2019).   DOI
62 S. A. Y. Shah, M. Zeeshan, M. Z. Farooq, N. Ahmed, and N. Iqbal, Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality, Renew. Energy., 130, 238-244 (2019).   DOI
63 Q. Cao, L. Jin, W. Bao, and Y. Lv, Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire, Fuel Process. Technol., 90, 337-342 (2009).   DOI