Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.6.399

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant  

Lee, Gi Na (Korean Minjok Leadership Academy)
Choi, So Young (Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, KAIST)
Na, Jonguk (Korean Minjok Leadership Academy)
Youn, HaJin (Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, KAIST)
Jang, Yu-Sin (Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, KAIST)
Publication Information
KSBB Journal / v.29, no.6, 2014 , pp. 399-404 More about this Journal
Abstract
Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.
Keywords
Polyhydroxyalkanoates; Crude glycerol; Spent coffee ground; Industrial waste; Sewage treatment plant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Johnson, D. T. and K. A. Taconi (2007) The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 26: 338-348.   DOI   ScienceOn
2 Sohn, S. B., T. Y. Kim, J. M. Park, and S. Y. Lee (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol. J. 5: 739-750.   DOI
3 Lee, S. Y., H. H. Wong, J. I. Choi, S. H. Lee, S. C. Lee, and C. S. Han (2000) Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470.   DOI
4 Corma, A., G. W. Huber, L. Sauvanaud, and P. O'Connor (2008) Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J. Catal. 257: 163-171.   DOI   ScienceOn
5 Malaviya, A., Y. S. Jang, and S. Y. Lee (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 93: 1485-1494.   DOI   ScienceOn
6 Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759.   DOI   ScienceOn
7 Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196-1206.   DOI
8 Park, S. J., Y. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab. Eng. 20: 20-28.   DOI
9 Sabourin-Provost, G. and P. C. Hallenbeck (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol. 100: 3513-3517.   DOI   ScienceOn
10 Mothes, G., C. Schnorpfeil, and J. U. Ackermann (2007) Production of PHB from crude glycerol. Eng. Life Sci. 7: 475-479.   DOI
11 Kondamudi, N., S. K. Mohapatra, and M. Misra (2008) Spent coffee grounds as a versatile source of green energy. J. Agri. Food Chem. 56: 11757-11760.   DOI   ScienceOn
12 Arya, M. and L. J. Rao (2007) An impression of coffee carbohydrates. Crit. Rev. Food Sci. Nutr. 47: 51-67.   DOI
13 Jung, Y. K., T. Y. Kim, S. J. Park, and S. Y. Lee (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105: 161-171.   DOI
14 Duke, J. A., & Atchley, A. A. (1984) Proximate analysis, IN: Christie, BR (ed), The handbook of plant science in agriculture. Boca Raton, FL: CRC Press, Inc.
15 Bertrand, B., P. Vaast, E. Alpizar, H. Etienne, F. Davrieux, and P. Charmetant (2006) Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology 26: 1239-1248.   DOI
16 Greenspan, P., E. P. Mayer, and S. D. Fowler (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965-973.   DOI   ScienceOn
17 Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) A rapid gas chromatographic method for the determination of poly-b-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37.   DOI
18 Zhang, H. F., L. Ma, Z. H. Wang, and G. Q. Chen (2009) Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Biotechnol. Bioeng. 104: 582-589.   DOI
19 Jacquel, N., C. W. Lo, Y. H. Wei, H. S. Wu, and S. S. Wang (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem. Eng. J. 39: 15-27.   DOI
20 Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI   ScienceOn
21 Reddy, S. V., M. Thirumala, T. V. K. Reddy, and S. K. Mahmood (2008) Isolation of bacteria producing polyhydroxyalkanoates (PHA) from municipal sewage sludge. World. J. Microbiol. Biotechnol. 24: 2949-2955.   DOI
22 Hu, S., X. Luo, C. Wan, and Y. Li (2012) Characterization of crude glycerol from biodiesel plants. J. Agric. Food Chem. 60: 5915-5921.   DOI