• Title/Summary/Keyword: Waste acid

Search Result 955, Processing Time 0.026 seconds

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

A Study on Treatment of Wastes from the Uranium Ore Dissolution/purification and Nuclear Fuel Powder Fabrication (우라늄 정광의 용해/정제 및 핵연료 분말 가공공정에서 발생된 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • This study Provides the treatment methods of liquid wastes from the dissolution/purification process of nuclear fuel raw material and the fabrication process of nuclear fuel powder. One of the treatment methods is to process liquid waste from uranium raw material dissolution/purification process. This waste, of the strong acid, can be reused to dissolve the fine ADU particles in filtrate which is ADU waste of pH 8.0 converted from AUC waste after recovery of uranium. To dissolve the fine ADU particles, ADU filtrate was pretreated to pH 4.0 with the dissolution/purification waste, and then mixed with the lime to pH 9.2 and aged for 30 minutes. From this processing, uranium content of the filtrate was decreased to below 3ppm. The waste from fuel powder fabrication is emulsified solution dispersed with fine oil droplets. This emulsion was destroyed effectively by adding and mixing the nitric acid with rapid heating at the same time. After this processing, $Na_2U_2O_7$ compound is produced by addition of NaOH. Optimum condition of this processing was shown at pH 11.5, and uranium content of the filtrate was analyzed to 5ppm. To remove the trace of uranium in the filtrate, lime should be added. Otherwise, 4N nitric acid was used to destroy the emulsion directly, and then lime was added to this waste. Uranium content of the treated filtrate was below 1 ppm. In addition to these wastes, the trace of uranium in filtrate after recovery of uranium from the AUC waste which is produced during PWR power preparation, is treated with NaOH to takeup fluorine(F) in the waste because fluorine is valuable and toxic material. In the finally treated waste, uranium was not detected.

  • PDF

A Study on the Possibility of Plant Introduction Using Soil Neutralization in the Abandoned Mine Waste Areas (광산폐석지에 토양 중화를 이용한 식물도입 가능성에 관한 연구)

  • Jung, Byoung-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.4
    • /
    • pp.29-43
    • /
    • 2024
  • The purpose of this study was to analyze the soil on two waste areas that lack plants to find out the limiting factors of plant introduction, and to find out the possibility of plant introduction through plant growth experiments by mixing the two waste soil. In the case of tungsten waste soil, insufficient organic matter, water content, effective phosphoric acid, and nitrogen content were the limiting factors for plant introduction, and in the case of coal waste soil, low pH of the soil acted as the limiting factors for natural introduction. Growth experiments showed that the number of leaves of Ipomoea nil grown in soil mixed with both waste soil was 2.7 times greater than that of Ipomoea nil grown in tungsten waste soil, and 2.29 times greater than that of Ipomoea nil grown in coal waste soil. The fresh weight comparison showed that Ipomoea nil grown in soil mixed with the two waste soil had a fresh weight of 2.64 times higher than that of tungsten waste soil and 2.45 times higher than that of coal waste soil. There was no significant difference in the fresh weight of Ipomoea nil grown in soil mixed with the two waste soil and in general soil. Therefore, when the two waste soil are mixed, it can be judged that the components unfavorable to growth complement each other, improving the soil and being effective in plant growth.

Development of Organic Compound Fertilizer Based on Treated Human Waste (분뇨잔사(糞尿殘渣)를 이용(利用)한 유기종합비료(有機綜合肥料) 개발(開發))

  • Shin, Jae-Sung;Seong, Ki-Seog;Lim, Dong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 1984
  • An organic compound fertilizer was manufactured using wet oxidation human waste as principal source of phosphorus and organic matter. The waste was treated with sulfuric and glutamic acids to increase the available and water-soluble $P_2O_5$ contents. The treatment of 0.1 N sulfuric acid with 24 hours curing was best way in recovering the maximum percentage of $P_2O_5$ originally in the waste. The particle size distribution of trial product varied considerably in the amount of glutamic acid used for granulation. The number of relatively large fertilizer particles was increased as the amount of glutamic acid was increased. The granule crushing strength was generally high in large granules in which 12.5 weight percent of glutamic acid were used for granulation. The trial product showed high moisture absorption due to its porous structure and chemical makeup.

  • PDF

From food wastes into useful probiotics: Development of Lactic acid bacteria as useful probiotics for animal feed without antibiotics using food waste (음식물류폐기물의 자원화를 위한 항세균 활성 유산균의 개발)

  • Seo, Jeong-Yong;Song, In-Geun;Lee, Dae-Gyu;Lee, Ki-Young;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.112-120
    • /
    • 2006
  • For the conversion of food waste into a good recycling material such as animal feed without antibiotics, thirteen lactic acid bacteria, which can be used as good probiotics for animal feed, were isolated from the intestine and feces in pigs. All isolates showed strong tolerance to high salt (4% of NaCl), acid(pH4.0), and bile juice (0.8% of oxgall). The growth rate was best at $37^{\circ}C$ in all strains. Among the isolates, Lactobacillus plantarum CJY-22, L. brevis CJY-42, L. arizonensis CJY-3, and Pediococcus sp. CJY-41 showed higher and broader spectrum of antimicrobial activities against six different pathogens such as Salmonella, typhimurium. L. plantarum CJY-22 has also grown well at $25^{\circ}C$, making this strain as an appropriate candidate for the fermentation of food waste at room temperature, thus conducting the fermentation process cost-effectively.

  • PDF

Variations of Hydrogen Production in the Presence of Heavy Metals During Anaerobic Fermentation of Food Waste (음식물쓰레기의 혐기성 소화 시 중금속에 따른 수소생산량의 변화)

  • Lee, Pul-eip;Lee, Tae-jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • In this study, variations of hydrogen production were investigated with food waste fermentation in the presence of heavy metals. Hydrogen production was 79.48 mL/g COD with fermentation of food waste. In the presence of 1 mg/L of zinc, the hydrogen production was decreased about 60%. When the copper is present, the production of hydrogen is severely inhibited, while the coexistence of copper with zinc relaxes the inhibition of copper and restores hydrogen production. Butyric acid or acetic acid was observed as the main species during hydrogen production. Klebsiella sp., Clostridium sp., and Dysgonomonas sp. were mainly appeared in the samples not containing heavy metals. However, Enterococcus sp. extremely influenced the hydrogen production activities of samples containing zinc or copper.

Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution (폐초경 스크랩 코발트 침출용액으로부터 옥살산 및 수산화물 침전에 의한 코발트 분말 회수)

  • Lee, Jaesung;Kim, Mingoo;Kim, Seulgi;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.497-501
    • /
    • 2021
  • Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.

Evaluation of Neutralization and FAME Conversion of Low-grade Waste Oil as Biodiesel Feedstock (저급 폐유지의 바이오디젤 원료 활용을 위한 중화탈산 및 FAME 전환 가능성 평가)

  • Joon-pyo Lee;Jin-suk Lee;Ji-yeon Park;Min-cheol Kim;Jae-wan Cho;Deog-keun Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.2-10
    • /
    • 2023
  • The current mandatory domestic biodiesel blending ratio is 3.5%, which is planned to be gradually increased to achieve carbon neutrality by 2050. The aim of this study was to improve domestic self-sufficiency in biodiesel raw oil by conducting a technical review on the possibility of utilizing waste oils, such as soup oil, chicken oil, and leather oil, as biodiesel feedstocks. These waste oils have an acid value that is too high to be converted directly into biodiesel. Therefore, a pretreatment to reduce the acid value is necessary. The neutralization process was examined as a potential technology for reducing the acid value. The oil recovery rate of the soup oil after neutralization was significantly low at 37.6 wt%. The oil recovery rates of leather oil and chicken oil were 66.49 wt% and 79.08 wt%, respectively. Based on biodiesel conversion experiment using waste oil with a reduced acid value, the conversions were analyzed as 89 wt%, 91.1 wt%, and 90.5 wt% for soup oil, leather oil, and chicken oil, respectively. Thus, it is technically possible to use soup oil, leather oil, and chicken oil as raw materials for producing biodiesel.

Study of manufacturing of portland cement and sulfuric acid from waste gypsum and the utilization of anthracite coal other than cokes as reaction promotor (폐석고로부터 시멘트와 유산제조 및 기반응촉진제 탄소의 무연탄 대체에 관한 연구)

  • Lee Suk Woo
    • Cement
    • /
    • s.30
    • /
    • pp.44-50
    • /
    • 1969
  • To manufacture portland cement and sulfuric acid from gypsum has long been established in Europe. As sulfur, more Precisely sulfuric acid, is getting around shortage, it boosts hunt for alternate sources and for new fertilizer process. As the result, all

  • PDF

Determination of major and minor elements in low and medium level radioactive wastes using closed-vessel microwave acid digestion (밀폐형 극초단파 산분해법을 이용한 중${\cdot}$저준위 방사성폐기물의 성분 원소 분석)

  • Lee Jeong-Jin;Pyo Hyung-Yeal;Jeon Jong-Seon;Lee Chang-Heon;Jee Kwang-Yong;Ji Pyung-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • The conditions are obtained for the decomposition of solid radioactive wastes, including ion exchange resin, zeolite, charcoal, and sludge from nuclear power plant. In the process of decomposing the radioactive wastes was used the microwave acid digestion method with mixed acid. The solution after acid digestion by the following method was colorless and transparent. Each solution was analyzed with ICP-AES and AAS and the recovery yield for 5 different elements added into the simulated radioactive wastes were over $94{\%}$. The elemental analysis of destructive low and medium level radioactive wastes by the proposed microwave acid digestion conditions concerning the chemical characteristics of each radioactive waste are expected to be useful basic data for development of optimal glass formulation.

  • PDF