• Title/Summary/Keyword: Warpage simulation

Search Result 67, Processing Time 0.022 seconds

A study on optimization of injection molding of large thick LH type elastic frame (대형 후육 LH형 탄성구조 프레임의 사출성형 최적화에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2022
  • In the present study, the injection molding optimization of a large thick LH type elastic frames for the reduction of warpage was performed. Two kinds of fine and coarse finite element models were prepared to investigate the efficiency of analysis time and quality on simulation results. In order to derive injection molding conditions that can minimize distortion of parts, it was investigated that the effects of mold temperature, resin temperature, injection time, hold pressure switching time, holding pressure and the hold time on deformation characteristics using the design of experiments. The main influential factors on the warpage were found from the optimization simulation and the geometry data of the warpage result was converted into an initial model for injection simulation. It was shown that a coarse model with good mesh quality could be adapted for mold design since the total analysis time using the proposed model was reduced to 1/10. The suggested inversed warpage model produced the best minimized result of warpage.

Cost-effective Machine Learning Method for Predicting Package Warpage during Mold Curing (몰드 경화 공정 중 패키지 휨 예측을 위한 비용 절감형 머신러닝 방법)

  • Seong-Hwan Park;Tae-Hyun Kim;Eun-Ho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.24-37
    • /
    • 2024
  • Due to the thin nature of semiconductor packages, even minor thermal loads can cause significant warpage, impacting product reliability through issues like delamination or cracking. The mold curing process, which encloses the package to protect the semiconductor chip, is particularly challenging to predict due to the complex thermal, chemical, and mechanical interactions. This study proposes a cost-effective machine learning model to predict warpage in the mold curing process. We developed methods to characterize the curing degree based on time and temperature and quantify the material's mechanical properties accordingly. A Finite Element Method (FEM) simulation model was created by integrating these properties into ABAQUS UMAT to predict warpage for various design factors. Additionally, a Warpage formula was developed to estimate local warpage based on the package's stacking structure. This formula combines bending theory with thermo-chemical-mechanical properties and was validated through FEM simulation results. The study presents a method to construct a machine learning model for warpage prediction using this formula and proposes a cost-effective approach for building a training dataset by analyzing input variables and design factors. This methodology achieves over 98% prediction accuracy and reduces simulation time by 96.5%.

Development of Warpage Simulation Method according to Thermal Stress based on Equivalent Anisotropic Viscoelastic Model (등가 이방성 점탄성 모델 기반 열 응력에 따른 휨 해석 기법 개발)

  • Kim, Heon-Su;Kim, Hak-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.43-48
    • /
    • 2022
  • In this study, simulation method was developed to improve the accuracy of the warpage simulation based on the equivalent anisotropic viscoelastic model. First, a package with copper traces and bumps was modeled to implement anisotropic viscoelastic behavior. Then, equivalent anisotropic viscoelastic properties and thermal expansion coefficient for the bump region were derived through the representative volume element model. A thermal cycle of 0 to 125 degrees was applied to the package based on the derived mechanical properties, and the warpage according to the thermal cycle was simulated. To verify the simulation results, the actual package was manufactured, and the warpage with respect to the thermal cycle was measured through shadow moiré interferometer. As a result, by applying the equivalent anisotropic viscoelastic model, it was possible to calculate the warpage of the package within 5 ㎛ error and predict the shape of the warpage.

Determination of Feed System and Process Conditions for Injection Molding of Automotive Connector Part with Two Warpage Design Characteristics (두 개의 휨 설계특성을 갖는 자동차 커넥터 부품의 사출성형을 위한 피드 시스템 및 공정조건의 결정)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.36-43
    • /
    • 2021
  • In this study, the optimal feed system and process conditions that can simultaneously minimize each warpage occurring in the two shape features of the 2P Header HSG, a connector part for automobiles, were determined through injection molding simulation analysis. First, we defined each warping deformation of the two features geometrically and quantified them approximately using the injection molding simulation data. For design optimization, a full factorial experiment was conducted considering the feed system, resin temperature, and packing pressure as design variables, and a follow-up experiment was conducted based on the analysis of the average warpage. In this study, an optimal design was generated considering both the warpage result and resin-saving effect. In the optimal design, the warpages of the two shape features were predicted to be 0.18 and 0.29 mm, and these warpages were found to meet the allowable limit of warpage, which is 0.3 mm, for part assembly.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Warpage Minimization in the Injection Molded Decorating Panel of Monitor by Considering Robustness (강건성을 고려한 모니터 장식패널 사출품의 휨 최소화)

  • Kwon O. K.;Park J. C.;Kim K. M.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An optimal robust design methodology has been developed to minimize the warpage in a decorating panel of monitor molded by the plastic injection. For the associated methodology, the Taguchi's Design Of Experiment (DOE) based on orthogonal arrays and Signal-to-Noise Ratio is combined with commercial simulation tools f3r injection molding. An optimal robust design solution is statistically resulted from the computational simulation. The related experiment was done for evaluations of the warpage in the decorating panel part of monitor. This research showed that the warpage under the applied optimal design conditions was comparatively reduced.

Optimization of Gate and Process Design Factors for Injection Molding of Automotive Door Cover Housing (자동차 도어용 커버 하우징의 사출성형을 위한 게이트 및 공정 설계인자의 최적화)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.84-90
    • /
    • 2022
  • The purpose of the cover housing component of a car door is to protect the terminals of the plug housing that connects the electric control unit on the door side to the car body. Therefore, for a smooth assembly with the plug housing and to prevent contaminants from penetrating into the gaps that occur after assembly, the warpage of the cover housing should be minimized. In this study, to minimize the warpage of the cover housing, optimization was performed for design factors related to the mold and processes based on the injection molding simulation. These design factors include gate location, gate diameter, injection time, resin temperature, mold temperature, and packing pressure. To optimize the design factors, Taguchi's approach to the design of experiments was adopted. The optimal combination of the design factors and levels that minimize warpage was predicted through L18-orthogonal array experiments and main effects analysis. Moreover, the warpage under the optimal design was estimated by the additive model, and it was confirmed through the simulation experiment that the estimated result was quite consistent with the experimental result. Additionally, it was found that the warpage under the optimal design was significantly improved compared to both the warpage under the initial design and the best warpage among the orthogonal array experimental results, which numerically decreased by 36.9% and 23.4%, respectively.

Numerical Study of Warpage and Stress for the Ultra Thin Package (수치해석에 의한 초박형 패키지의 휨 현상 및 응력 특성에 관한 연구)

  • Song, Cha-Gyu;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.49-60
    • /
    • 2010
  • Semiconductor packages are increasingly moving toward miniaturization, lighter and high performance. Futhermore, packages become thinner. Thin packages will generate serious reliability problems such as warpage, crack and other failures. Reliability problems are mainly caused by the CTE mismatch of various package materials. Therefore, proper selection of the package materials and geometrical optimization is very important for controlling the warpage and the stress of the package. In this study, we investigated the characteristics of the warpage and the stress of several packages currently used in mobile devices such as CABGA, fcSCP, SCSP, and MCP. Warpage and stress distribution are analyzed by the finite element simulation. Key material properties which affect the warpage of package are investigated such as the elastic moduli, CTEs of EMC molding and the substrate. Geometrical effects are also investigated including the thickness or size of EMC molding, silicon die and substrate. The simulation results indicate that the most influential factors on warpage are EMC molding thickness, CTE of EMC, elastic modulus of the substrate. Simulation results show that warpage is the largest for SCSP. In order to reduce the warpage, DOE optimization is performed, and the optimization results show that warpage of SCSP becomes $10{\mu}m$.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.