• Title/Summary/Keyword: Wall reflection

Search Result 170, Processing Time 0.027 seconds

Hydraulic Characteristics of water affinity sea-wall block (환경친화형 친수호안(親水護岸)블록 수리특성)

  • Han, Jea-Myung;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.179-182
    • /
    • 2007
  • In this study hydraulic model experiment was conducted to identify the performance of newly developed water affinity sea-wall block to keep the coastal line from eroding and supply water affinity space by reflection coefficient and safety. In the result, the block is applicable to the field.

Investigation of Bordered Pit Ultrastructure in Tracheid of Korean Red Pine (Pinus densiflora) by Confocal Reflection Microscopy (공초점반사현미경을 이용한 소나무 유연벽공의 초미세구조 연구)

  • Kwon, Ohkyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.346-355
    • /
    • 2014
  • Confocal reflection microscopy (CRM) was utilized to create 3-dimensional images of bordered pits and cell wall in the tracheid of Korean red pine (Pinus densiflora). Ultrastructures of torus, margo, and pit border were clearly observable in the CRM micrograph. Micrograph of cross-field pit revealed the connecting and supporting structure between tracheid and ray parenchyma cell. The CRM micrographs enabled to investigate detailed structures of tracheid cell wall such as S1, S2, S3 layers, transition layers between these layers, and microfibril (MF) orientation in S3 and S2 layers as well as complicated distribution of MF orientation around bordered pits. Not only concentric MF orientation of border thickening in the pit border was observed, but also changes in MF orientation from the cell wall to the border. From the experimental results, the CRM was thought to be a versatile microtechnique to investigate detailed structures of cell wall and bordered pit in the tracheid and cross-field pit between tracheid and ray parenchyma cell.

The Measurements and Evaluations on the Configurations of Absorptive and Diffusing Treatments in Classrooms using a Scale Model (축소모형법을 이용한 흡음재와 확산체 배치조건별 교실의 음향성능 측정 및 평가)

  • Choi, Young-Ji
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • The present study examines the effects of periodic type diffusers for producing the preferred acoustics for speech and determines the more successful configurations of sound-absorbing and diffusing treatments for achieving good acoustics in classrooms. The measurements were carried out in a 1/10 scale model classroom systematically adding diffusers to one or more of four surfaces of the room. A total of 13 combination of diffusers with absorptive treatments were investigated. Adding diffusers on the ceiling were more effective to increasing the early-arriving reflection energy($G_{50}$) than adding absorptive materials on the entire ceiling. The late arriving reflection energy($G_{late}$) was decreased with increasing amounts of diffusing treatments of upper front or rear wall and this resulted in achieving higher early-to-late ratios($G_{50}$). Adding diffusers on the upper front wall($AC_{100}DUFW_{26}$) achieved more uniform acoustical conditions over the receiver positions than adding diffusers on the upper rear wall($AC_{100}DUFW_{26}$). Adding diffusers on the ceiling and absorptive materials on the lower front wall($AC_{75}DC_{25}ALFW_{26}$) achieved better acoustical conditions than adding the absorptive materials on the entire ceiling and lower front wall($AC_{100}ALFW_{26}$).

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain (저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

Wave Reflection from Partialy Perforated Caisson Breakwater (부분 유공 케이슨 방파제로부터의 파의 반사)

  • Suh, Kyung-Doug
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.3
    • /
    • pp.221-230
    • /
    • 1996
  • The Suh and Park's analytical model. originally developed to calculate wave reflection from a conventional fully perforated caisson breakwater, is applied to a partially perforated caisson breakwater by approximating the vertical wall of the lower part of the front face of the caisson as a very steep sloping wall. Also, in the model, the inertial resistance term at the perforated wall is modified by using the blockage coefficient proposed by Kakuno and Liu. The model is compared against the hydraulic experimental data reported by Park et al. in 1993. Both the experimental data and the analytical model results show that the influence of inertial resistance is important so that wave reflection becomes minimum when B/L. is approximately 0.2 (in which R : wave chamber width, and 1, : wave length inside the wave chamber), which is somewhat smaller than the theoretical value B/L, : 0.25 obtained by assuming that the influence of inertial resistance is negligible. It is also shown that the analytical model based on a linear wave theory tends to overpredict the reflection coefficient as the wave nonlinearity increases, thus the model is preferably to be used for ordinary waves of small steepness.

  • PDF

On the Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters Using a Regular Wave Model (규칙파 모델을 이용한 유공케이슨 방파제로부터의 불규칙파 반사율 산정에 대하여)

  • 서경덕;손상영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • In this paper we examine several methods tor calculating the reflection of irregular waves from a perforated-wall caisson breakwater using a regular wave model. The first method is to approximate the irregular waves as a regular wave whose height and period are the same as the root-mean-squared wave height and significant wave period, respectively, of the irregular waves. The second is to use the regular wave model, repeatedly, for each frequency component of the irregular wave spectrum. The wave period is determined according to the frequency of the component wave, and the root-mean-squared wave height is used for all the frequencies. The third method is the same as the second one except that the wave height corresponding to the energy of each component wave is used. Comparison with experimental data from previous authors shows the second method is the most adequate, giving reasonable agreement in both frequency-averaged reflection coefficients and reflected wave spectra.

Development of Thermal Properties on the Roof Waterproof with Insulation System using the Diffused Reflection Material (확산반사를 이용한 경질시트 옥상 단열방수공법의 열성능 개선에 관한 연구)

  • Koo, Jae-Oh
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This paper aims to develop the diffused reflection material in order to reduce the solar absorption coefficient, and to compare the thermal properties with the different roof structure system; one is using the diffused reflection material applied the upper side of the rigid sheet waterproof system and the other is using the conventional up-side down waterproof system on the roof. For this purpose two experimental test boxes were made of same iso-panel wall and floor with different roof system. The experiment was carried out under these process; measure the surface temperature exposed solar radiation of the variation of the reflection materials(cement paste, silica, galvanized steel and titanium dioxide(TiO2)), measure and analyze the variation of the temperature distribution of the each roof system and indoor air in order to evaluate the thermal properties according to the different roof system. The result shows clearly that using the titanium dioxide(TiO2) might be more effective to reduce the solar insolation.

An Experimental Investigation for Hydraulic Characteristics of Solid and Perforated-wall Caissons of a Mixed Type Breakwater (혼성방파제의 무공 및 유공 케이슨의 수리특성에 관한 실험)

  • 서경덕;오영민;전인식;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.243-249
    • /
    • 1992
  • Hydraulic experiments were carried out to investigate the hydraulic characteristics of solid and perforated-wall caissons of a mixed type breakwater for regular waves of various heights and periods. It was found that a perforated-wall caisson is more advantageous than a solid caisson for such hydraulic characteristics as reflection. transmission, and runup at the front face of the caissons and that the experimental results agree reasonably well with existing theoretical or empirical relationships. Especially the reflection coefficient of a perforated-wall caisson. mainly governed by the resonance in the wave chamber, was found to be minimum when the width of the wave chamber is approximately a quarter of the wave length in the wave chamber.

  • PDF

Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping (고립파의 수직 벽면 반사와 Stokes 감쇠에 관한 개선된 부시네스크 방정식을 이용한 수치해석 연구)

  • Park, Jinsoo;Jang, Taek Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.64-71
    • /
    • 2022
  • In this paper, we simulate the collision of a solitary wave on a vertical wall in a uniform water channel and investigate the effect of damping on the amplitude attenuation. In order to take into account the damping effect, we introduce the Stokes damping whose dissipation is dependent on the velocity of wave motion on the surface of a thin layer of oil. That is, we use the improved Boussinesq equation with Stokes damping to describe the damped wave motion. Our work mainly focuses on the amplitude attenuation of a propagating solitary wave, which may depend on the Stokes damping together with the initial position and initial amplitude of the wave. We utilize the method of images and a powerful numerical tool (functional iteration method) for solving the improved Boussinesq equation, yielding an effective numerical simulation. This enables us to find the amplitudes of the incident wave and reflected one, whose ratio is a measure of the (wave) amplitude attenuation. Accordingly, we have shown that the reflection of a solitary wave by a vertical wall is dependent on not only the initial amplitude and position of a solitary but the Stokes damping.

Reflection of Plane Shock Wave over Concave and Convex Walls (오목, 볼록면에서 평면충격파의 반사)

  • JEON, Heung-Kyun;KWON, Jin-Kyung;KWON, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1473-1480
    • /
    • 1999
  • In the case of Impingement of plane moving shock wave over concave or convex double wedges (pseudo-stationary flow) and cylindrical walls (truly non-stationary flow), it Is expected that there are transitions from regular reflection to Mach reflection or vice versa In shock wave reflections. In these connections, it is necessary to verify the various of reflection process and transition angle for the reflection problems In double wedges, and to verify the transition angle, effects of curvature radius and initial wall angle on it for the reflection problems In cylindrical walls. Especially, we focused our attention to confirm the existence of hysteresis phenomenon induced by the different transition processes, and Neumann paradox, which is a small discrepancy between theoretical and experimental transition angles. Experiments were carried out by using the shock tube of $6{\times}6cm^2$, and high speed photographic technique consisted of delay unit, triggering system, light source of Xe lamp and so on was used for flow visualization.