Browse > Article
http://dx.doi.org/10.5658/WOOD.2014.42.3.346

Investigation of Bordered Pit Ultrastructure in Tracheid of Korean Red Pine (Pinus densiflora) by Confocal Reflection Microscopy  

Kwon, Ohkyung (National Instrumentation Center for Environmental Management, Seoul National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.42, no.3, 2014 , pp. 346-355 More about this Journal
Abstract
Confocal reflection microscopy (CRM) was utilized to create 3-dimensional images of bordered pits and cell wall in the tracheid of Korean red pine (Pinus densiflora). Ultrastructures of torus, margo, and pit border were clearly observable in the CRM micrograph. Micrograph of cross-field pit revealed the connecting and supporting structure between tracheid and ray parenchyma cell. The CRM micrographs enabled to investigate detailed structures of tracheid cell wall such as S1, S2, S3 layers, transition layers between these layers, and microfibril (MF) orientation in S3 and S2 layers as well as complicated distribution of MF orientation around bordered pits. Not only concentric MF orientation of border thickening in the pit border was observed, but also changes in MF orientation from the cell wall to the border. From the experimental results, the CRM was thought to be a versatile microtechnique to investigate detailed structures of cell wall and bordered pit in the tracheid and cross-field pit between tracheid and ray parenchyma cell.
Keywords
confocal reflection microscopy; bordered pit; torus; margo; cross-field pit; secondary wall; microfibril angle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fengel, D., Wegener, G., 1983. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin, Germany.
2 Donaldson, L., Frankland, A. 2004. Ultrastructure of iodine treated wood. Holzforschung 58(3): 219-225.
3 Donaldson, L., Xu, P. 2005. Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees-Structure and Function 19(6): 644-653.   DOI
4 Donaldson, L. 2008. Microfibril angle: measurement, variation and relationships - a review. IAWA Journal 29(4): 345-386.   DOI   ScienceOn
5 Hacke, U. G., Jansen, S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist 182(3): 675-686.   DOI   ScienceOn
6 Jang, H. F., Seth, R. S. 1998. Using confocal microscopy to characterize the collapse behavior of fibers. Tappi Journal 81(5): 167-174.
7 Jang, H. F., Seth, R. S., Wu, C. B., Chan, B. K. 2005. Determining the transverse dimensions of fibers in wood using confocal microscopy. Wood and Fiber Science 37(4): 615-628.
8 Jansen, S., Lamy, J. B., Burlett, R., Cochard, H., Gasson, P., Delzon, S. 2012. Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant, Cell and Environment 35(6): 1109-1120.   DOI   ScienceOn
9 Kasarova, S. N., Sultanova, N. G., Ivanov, C. D., Nikolov, I. D. 2007. Analysis of the dispersion of optical plastic materials. Optical Materials 29(11): 1481-1490.   DOI   ScienceOn
10 Khalili, S., Nilsson, T., Daniel, G. 2001. The use of soft rot fungi for determining the microfibrillar orientation in the S2 layer of pine tracheids. Holz Als Roh-Und Werkstoff 58(6): 439-447.   DOI
11 Donaldson, L. A. 1985. Critical assessment of interference microscopy as a technique for measuring lignin distribution in cell walls. New Zealand Journal of Forestry Science 15(3): 349-360.
12 Anagnost, S. E., Mark, R. E., Hanna, R. B. 2000. Utilization of soft-rot cavity orientation for the determination of microfibril angle. Part I. Wood and Fiber Science 32(1): 81-87.
13 Abe, H., Funada, R., Ohtani, J., Fukazawa, K. 1997. Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11(6): 328-332.   DOI
14 Abe, H., Ohtani, J., Fukazawa, K. 1991. FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bulletin 12(4): 431-438.   DOI
15 Abraham, Y., Elbaum, R. 2013. Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy. New Phytologist 197(3): 1012-1019.   DOI   ScienceOn
16 Anagnost, S. E., Mark, R. E., Hanna, R. B. 2002. Variation of microfibril angle within individual tracheids. Wood and Fiber Science 34(2): 337-349.
17 Bergander, A., Brandstrom, J., Daniel, G., Salmen, L. 2002. Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy. Journal of Wood Science 48(4): 255-263.   DOI   ScienceOn
18 Bergander, A., and Salmen, L. 2002. Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science 37(1):151-156.   DOI   ScienceOn
19 Brandstrom, J. 2004. Microfibril angle of the S-1 cell wall layer of Norway spruce compression wood tracheids. IAWA Journal 25(4): 415-423.   DOI
20 Brandstrom, J., Bardage, S. L., Daniel, G., Nilsson, T. 2003. The structural organisation of the S-1 cell wall layer of Norway spruce tracheids. IAWA Journal 24(1): 27-40.   DOI
21 Abe, H., Funada, R., Imaizumi, H., Ohtani, J., Fukazawa, K. 1995. Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197(2): 418-421.
22 Abe, H., Funada, R. 2005. Review - The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA Journal 26(2): 161-174.   DOI
23 Schulte, P. J. 2012. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytologist 193(3): 721-729.   DOI   ScienceOn
24 Oldenbourg, R. 1999. Polarized light microscopy of spindles. Methods in Cell Biology 61: 175-208.
25 Reis, D., Vian, B. 2004. Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. C. R. Biologies 327(9): 785-790.   DOI   ScienceOn
26 Sedighi-Gilani, M., Sunderland, H., Navi, P. 2005. Microfibril angle non-uniformities within normal and compression wood tracheids. Wood Science and Technology 39(6): 419-430.   DOI
27 Wang, N., Liu, W., Peng, Y. 2013. Gradual transition zone between cell wall layers and its influence on wood elastic modulus. Journal of Materials Science 48(14): 5071-5084.   DOI   ScienceOn
28 Kitin, P., Fujii, T., Abe, H., Takata, K. 2009. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Annals of Botany 103(7): 1145-1157.   DOI   ScienceOn
29 Maschek, D., Goodell, B., Jellison, J., Lessard, M., Militz, H. 2013. A new approach for the study of the chemical composition of bordered pit membranes: 4Pi and confocal laser scanning microscopy. American Journal of Botany 100(9): 1751-1756.   DOI   ScienceOn
30 Leney, L. 1981. A technique for measuring fibril angle using polarized-light. Wood and Fiber 13(1): 13-16.
31 Peter, G. F., Benton, D. M., Bennett, K. 2003. A simple, direct method for measurement of microfibril angle in single fibres using differential interference contrast microscopy. Journal of Pulp and Paper Science 29(8): 274-280.