• Title/Summary/Keyword: Wall mass effect

Search Result 245, Processing Time 0.034 seconds

Numerical Analysis on Behavior of Cantilever Retaining Walls (캔틸레버 옹벽의 거동에 대한 수치해석적 연구)

  • Jang, In-Seong;Jeong, Chung-Gi;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • Current methods to estimate the earth pressure for retaining wall analysis are based on Rankine or Coulomb approaches, in which the soil mass behind wall is assumed to reach to failure state with sufficient lateral movements. Some of recent research works carried out by field measurements reveal that the active earth. pressures by Ranking or Coulomb method are underestimated. It means that the lateral movements of wall and soil would not be mobilized enough to reach the failure state. In this study, the finite element method with Drucker -Prager model for soil is employed to investigate the behavior of concrete cantile,tier retaining wall, together with the influence of inclined backfill. The results indicate that the earth pressures on the retaining wall are strongly related to the mobilized lateral movements of wall and soil and that Ranking and Coulomb methods underestimate the resultant earth pressures and the increasing effect on earth pressure by inclined backfill. Based on this study, a simplified method to determine to earth pressures on cantilever retaining wall with horizontal backfill is proposed.

  • PDF

Kinetics of CO2 Absorption in Aqueous DETA and DEEA Solutions by Wetted-Wall Column (젖은 벽탑을 이용한 디에틸렌트리아민과 디에틸에탄올아민 수용액의 CO2 흡수속도 측정)

  • You, Jong Kyun;Lee, Jun;Hong, Yeon Ki
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.582-587
    • /
    • 2022
  • Biphasic solvents are attracting attention as energy-reducing solvents for capturing CO2 from flue gas in combustion process. In this study, considering diethylenetriamine (DETA) and diethylethanolamine (DEEA) mixed solvents, one of the biphasic solvents by blending of two types of amines, the CO2 absorption rates of DETA and DEEA was measured by wetted wall column. The effects of DETA and DEEA concentrations and operating temperature on the overall mass transfer coefficient were investigated. As a result, the overall mass transfer coefficient was proportional to the DETA concentration. However, in the case of the DEEA concentration, the effect was small and when the concentration was exceeded, the overall mass transfer coefficient decreased. The DETA aqueous solution showed little change in the overall mass transfer coefficient with the operating temperature, whereas the DEEA aqueous solution increased the overall mass transfer coefficient with the operating temperature. As a result of obtaining the observed reaction rate constant under the pseudo-first-order reaction assumption, it was found that the observed reaction rate constant in DETA aqueous solution was proportional to the DETA concentration, but DEEA did not fit the pseudo-first-order reaction assumption.

2-D Dynamic analysis method of base-isolated pool structure (면진수조의 2차원 동적 해석기법 개발)

  • 전영선;최인걸;김진웅
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.67-74
    • /
    • 1995
  • This study develops 2-D analysis method of a base-isolated pool structure, and verifies the method through shaking table test using a scaled model. A wall of the pool structure is modeled as lumped mass, and added mass of the fluid is imposed on the nodes of the structure to consider the hydrodynamic effect of contained fluid. The equation of motion of base-isolated pool structure is obtained by coupling of two equations for superstructure composed of wall and fluid, and for bottom slab and isolator. The scaled model for shaking table test is made with transparent acryle, and 4-high damping laminated rubber bearings are used. The responses of the scaled model by the test are generally good agreement with those by the analysis. It is shown that 2-D analysis method gives somewhat conservative results.

  • PDF

The characteristics of pyrolysis and combustion for a hollow cylindrical solid fuel (중공 원통형 고체연료의 열분해 및 연소특성)

  • 민성기;김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.517-527
    • /
    • 1989
  • A theoretical analysis for the characteristics of pyrolysis and combustion of solid fuel was carried out in the present study. The hollow cylindrical combustion model including gas phase and solid fuel at inside and outside respectively was developed for the numerical analysis and parametric studies. The effects of volatile contents in the porous solid fuel and Reynolds number at inlet of gas phase on the characteristics of pyrolysis and combustion such as the radial, axial and time variations of volatile mass flux through porous solid fuel, temperature, mass fractions of gaseous fuel and oxidizer, and flame shape were investigated in the parametric studies. The results of the present study show that the flame produced by the volatiles moves to the downstream of fuel with accelerating velocity with time until extinction is occurred resulting from the completion of pyrolysis. When flame is employed with smaller amount of volatiles content in the solid fuel, the flame sheet exists closer to the inner wall of solid fuel. As Reynolds number at inlet increases, the flame sheet moves to the inner wall due to effect of convection even though the volatiles by pyrolysis increases.

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Numerical Study of Heat Transfer Associated with Droplet Impact (액적 충돌에 동반된 열전달에 관한 수치적 연구)

  • Kim, Sung-Il;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1093-1100
    • /
    • 2004
  • Numerical analysis of the heat transfer associated with droplet impact on a hot solid surface is performed by solving the equations governing conservation of mass, momentum and energy in the liquid and gas phases. The deformed droplet shape is tracked by a level set method which is modified to achieve volume conservation and to include the effect of contact angle at the wall. The numerical method is validated through the calculations for the cases reported in the literature. Based on the numerical results, the heat transfer rate is found to depend strongly on the droplet spread radius. Decreased advancing/receding contact angles enlarge the splat radius and in turn enhance the wall heat flux. The effect of impact velocity on the droplet spread is reduced as the droplet size decreases. Also, droplet atomization is observed to significantly enhance the heat transfer rate and the effect is pronounced for a smaller size of droplet. An existing model equation to predict the maximum spread radius is improved for application to a micro droplet.

A Study for the Measurement of a fluid Density in a ripe Using Elastic Waves

  • Kim, Jin-Oh;Hwang, Kyo-Kwang;Bau, Haim-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.583-593
    • /
    • 2003
  • The effect of liquid confined in a pipe on elastic waves propagating in the pipe wall was studied theoretically and experimentally. The axisymmetric motion of the wave was modeled with the cylindrical membrane shell theory. The liquid pressure satisfying the axisymmetric wave equation was included in the governing equation as a radial load. The phase speed of the wave propagating in the axial direction was calculated, accounting for the apparent mass of the liquid. Experiments were performed in a pipe equipped with ring-shaped, piezoelectric transducers that were used for transmitting and receiving axisymmetric elastic waves in the pipe wall. The measured wave speeds were compared with the analytical ones. This work demonstrates the feasibility of using pipe waves for the determination of the density and, eventually, the flow rate of the liquid in a pipe.

A Study on Behavior of Rectangular Liquid Storage Structures (직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구)

  • 박장호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

A Study on the Prediction of Combustion Gas Behavior Induced by Fire in a Building (건물내 화재에 의한 연소가스 거동 예측에 관한 연구)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.267-281
    • /
    • 1994
  • The Combustion gas behavior induced by fire in a building is numerically investigated. The typical building for this analysis is partially divided by a vertical baffle projecting from the ceiling. The solution procedure includes the low Reynolds number ${\kappa}-{\varepsilon}$ model for the turbulent flow and the discrete ordinates method is used for the calculation of radiative heat transfer equation. The effects of the location and size of fire source and baffle length on velocity and temperature distributions, species mass fraction and flame location are analyzed. As the results of this study, it is found that the case when the fire source is located at the vertical wall is more dangerous than at the bottom wall in view of the combustion products and flame location. It is also found that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

INFLUENCE OF HALL CURRENT AND HEAT SOURCE ON MHD FLOW OF A ROTATING FLUID IN A PARALLEL POROUS PLATE CHANNEL

  • VENKATESWARLU, M.;UPENDER REDDY, G.;VENKATA LAKSHMI, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.217-239
    • /
    • 2018
  • This paper examined the MHD and thermal behavior of unsteady mixed convection flow of a rotating fluid in a porous parallel plate channel in the presence of Hall current and heat source. The exact solutions of the concentration, energy and momentum equations are obtained. The influence of each governing parameter on non dimensional velocity, temperature, concentration, skin friction coefficient, rate of heat transfer and rate of mass transfer at the porous parallel plate channel surfaces is discussed. During the course of numerical computation, it is observed that as Hall current parameter and Soret number at the porous channel surfaces increases, the primary and secondary velocity profiles are increases while the primary and secondary skin friction coefficients are increases at the cold wall and decreases at the heated wall. In particular, it is noticed that a reverse trend in case of heat source parameter.