• 제목/요약/키워드: Wall boundary condition

검색결과 271건 처리시간 0.025초

다양한 벽 경계조건을 이용한 정사각형 항구의 흐름구조 예측 (Flow Structure Prediction for a Square Harbour using Various Wall Boundary Conditions)

  • 강윤호
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.151-158
    • /
    • 1999
  • A model harbour with Plan scale of $1.08{\times}1.08m$ is built on a tidal tank using a Froude relationship from a real harbour($432{\times}432m$). Velocity components are measured by a ultrasonic velocity meter and flow structure is then predicted using a 2-D depth integrated hydrodynamic model. In the finite difference model implemented in this study, various wall boundary conditions, i.e. no-slip, free-slip, partial-slip and semi-slip are used to represent turbulent diffusion terms, e.g. ${\partial}^2U_{ij}/{\partial}x^2\;or\;{\partial}^2U_{ij}/{\partial}y^2$. These conditions are focused to investigate their influence on the flow structure along the wall and basin of the harbour with aspect ratio of unity, i.e. Length/Breadth. Numerical experiments are compared with the measurements and used to analyse flow patterns in the basin during tidal cycles. It is shown from the results that no-slip closed boundary condition is the most appropriate method with respect to the location of the eddy centre, although the condition underestimates velocity components along the wall.

  • PDF

다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 과한 경계조건을 이용한 초음속 흐름의 수치모사 (NUMERICAL SIMULATION OF SUPERSONIC FLOW USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS)

  • 곽인근;유일용;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.104-111
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, the boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Using the newly modified code, numerical simulations were performed and compared with other computational results as well as the experimental data for the supersonic flows over an oblique shock with a bleed region.

  • PDF

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

캐비티내에서 표면복사를 고려한 2차원 층류 자연대류 열전달 (Two-Dimensional Laminar Natural Convection Heat Transfer with Surface Radiation in a Cavity)

  • 박희용;박경우;한철희
    • 설비공학논문집
    • /
    • 제4권3호
    • /
    • pp.217-232
    • /
    • 1992
  • A Numerical study on two-dimensional laminar natural convection with and without surface radiation in fully or partially open square cavity was performed. The cavity has one vertical heated wall facing a vertical opening and two horizontal insulated walls. The pressure boundary condition was applied to the opening instead of the velocity boundary condition. The results of this study showed that the increase of partition length decreased the convective and the radiative Nusselt numbers. It was also found that the increase of wall emissivity decreased the convective Nusselt numbers but increased the radiative Nusselt numbers.

  • PDF

Langmuir 미끄럼 경계조건을 이용한 미소 박리유동의 예측 (Predictions of Microscale Separated Flow using Langmuir Slip Boundary Condition)

  • 이도형;맹주성;최형일;나욱상
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1097-1104
    • /
    • 2003
  • The current study analyzes Langmuir slip boundary condition theoretically and it is tested in practical numerical analysis for separation-associated flow. Slip phenomenon at the channel wall is properly implemented by various numerical slip boundary conditions including Langmuir slip model. Compressible backward-facing step flow is compared to other analysis results with the purpose of diatomic gas Langmuir slip model validation. The numerical solutions of pressure and velocity distributions where separation occurs are in good agreement with other numerical results. Numerical analysis is conducted for Reynolds number from 10 to 60 for a prediction of separation at T-shaped micro manifold. Reattachment length of flows shows nonlinear distribution at the wall of side branch. The Langmuir slip model predicts fairly the physics in terms of slip effect and separation.

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations

  • Nishida Hidetoshi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.61-62
    • /
    • 2003
  • In this paper, the new higher order wall boundary conditions are proposed for solving the incompressible flows. The square driven cavity flows are simulated by using the variable order method of lines with the present wall boundary conditions. The variable order method of lines is constructed by the spatial discretization, i.e., the variable order proper convective scheme for convective terms and the modified differential quadrature method for diffusive terms, and time integration. The 2nd, 4th, and 6th order solutions are presented and these results show this higher order boundary conditions are very promising for the incompressible flow simulations.

  • PDF

Development of Viscous Boundary Conditions in an Immersed Cartesian Grid Framework

  • Lee, Jae-Doo
    • Journal of Ship and Ocean Technology
    • /
    • 제10권3호
    • /
    • pp.1-16
    • /
    • 2006
  • Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and vortex capturing by solution adaption. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing Euler solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which can be easily applied to a moving grid solver. The standard $k-{\varepsilon}$ model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. Developed approach is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, and axisymmetric hemispheroid.

천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동 (Flow behaviors of square jets surface discharged and submerged discharged into shallow water)

  • 김대근;김동옥
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

원관내 층류 왕복유동에 의한 열적발달영역에서의 열전달 (Heat Transfer by Liminar Oscillating Pipe Flow in Thermally Developing Region)

  • 이대영;박상진;노승탁
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.997-1008
    • /
    • 1994
  • Heat transfer by laminar oscillating flow in a circular pipe has been studied analytically. The general solution with respect to the arbitrary wall boundary condition is obtained by superposing the fluid temperatures with the sinusoidal wall temperature distributions. The fulid temperature distributions are two dimensional, but uniform flow assumption is used to simplify the velocity distribution. The heat transfer characteristics in the thermally developing regions are analyzed by applying the general solution to the two cases of thermal boundary conditions in which the wall temperature and wall heat flux distributions have a square-wave form, respectively. The results show that the length of the thermally developing region becomes larger in proportion to the oscillation frequency at slow oscillation and eventually approaches to the value comparable to the swept distance as the frequency increases. The time and cross-section averaged Nusselt number in the developing region is inversely proportional to the square root of the distance from the position where the wall boundary condition is changed suddenly. In the developed region, Nusselt number is only determined by the oscillation frequency.

미소유동 해석을 위한 압력수정기법 및 미끄럼 경계조건 (Pressure Correction Method and Slip Boundary Conditions for Microflows)

  • 최형일;맹주성;이도형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.430-435
    • /
    • 2001
  • This paper introduces a pressure correction method for microflow computation. Conventional CFD methods with no slip boundary condition fail to predict the rarefaction effect of the wall when simulating gas microflows in the slip-flow regime. Pressure correction method with an appropriate slip boundary condition is an efficient tool in analyzing microscale flows. The present unstructured SIMPLE algorithm adopts both the classical Maxwell boundary condition and Langmuir boundary condition proposed by Myong. The simulation results of microchannel flows show that the proposed method has an effective predictive capability for microscale flows.

  • PDF