DOI QR코드

DOI QR Code

Predictions of Microscale Separated Flow using Langmuir Slip Boundary Condition

Langmuir 미끄럼 경계조건을 이용한 미소 박리유동의 예측

  • 이도형 (한양대학교 기계정보경영공학부) ;
  • 맹주성 (한양대학교 기계공학부) ;
  • 최형일 (한양대학교 기계기술연구소) ;
  • 나욱상 (한양대학교 대학원 기계공학과)
  • Published : 2003.08.01

Abstract

The current study analyzes Langmuir slip boundary condition theoretically and it is tested in practical numerical analysis for separation-associated flow. Slip phenomenon at the channel wall is properly implemented by various numerical slip boundary conditions including Langmuir slip model. Compressible backward-facing step flow is compared to other analysis results with the purpose of diatomic gas Langmuir slip model validation. The numerical solutions of pressure and velocity distributions where separation occurs are in good agreement with other numerical results. Numerical analysis is conducted for Reynolds number from 10 to 60 for a prediction of separation at T-shaped micro manifold. Reattachment length of flows shows nonlinear distribution at the wall of side branch. The Langmuir slip model predicts fairly the physics in terms of slip effect and separation.

Keywords

References

  1. Gad-el-Hak, M., 1999, 'The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture,' Journal of Fluids Engineering, Vol. 121, pp. 5-33 https://doi.org/10.1115/1.2822013
  2. Myong, R. S., 2000, 'Analysis of Rarefied and MEMS Gas Flows using Thermodynamically Consistent Nonequilibrium Hydrodynamic Models,' KSAS Journal, Vol. 28, No. 4, pp. 35-47
  3. Brid, G., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Science Publications, Midsomer Norton, Avon, UK
  4. Beskok, A., Kamiadakis, G. E., and Trimmer, W., 1996, 'Rarefaction and Compressibility Effects in Gas Microflows,' Journal of Fluids Engineering, Vol. 118, pp. 448-456 https://doi.org/10.1115/1.2817779
  5. Myong, R. S., 1999, 'Thermodynamically Consistent Hydrodynamic Computational Models for high-Knudsen-number gas flows,' Phys. Fluids, Vol. 11, No. 9, pp.2788-2802 https://doi.org/10.1063/1.870137
  6. Piekos, E. S. and Breuer, K. S., 1996, 'Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method,' Journal of Fluids Engineering, Vol. 118, pp. 464-469 https://doi.org/10.1115/1.2817781
  7. Arkilic, E. B., 1997, 'Measurement of the Mass Flow and Tangential Momentum Accommodation Coefficient in Silicon Micromachined Channels,' Ph.D. Dissertation, MIT, Cambridge
  8. Arkillic, E. B., Schmidt, M. A., and Breuer, K. S., 1997, 'Gaseous Slip Flow in Long Microchannels,' J. of Microelectromechanical Systems, Vol.6, No.2, pp.167-178 https://doi.org/10.1109/84.585795
  9. Beskok, A., 2001, 'Validation of a new velocity-slip model for separated gas microflows,' Numerical Heat Transfer, Part B, pp. 451-471 https://doi.org/10.1080/104077901753306593
  10. Myong, R. S., 2001, 'Velocity-Slip Effect in Low-Speed Microscale Gas Flows,' AIAA 2001-3076, 35th AIAA Thermophysics Conference, Aneheim, CA.
  11. Adamson, A. W., Gast, A. P., 1997, Physical Chemistry of Surfaces, 6th ed., John Wiley & Sons, Inc.
  12. Choi, H., Lee, D., and Maeng, J., 2002, 'Numerical Analysis of Microchannel Flows Using Langmuir Slip Model,' KSME Journal B, Vol. 26, No. 4, pp. 587-593 https://doi.org/10.3795/KSME-B.2002.26.4.587
  13. Kennard, E. H., 1938, Kinetic Theory of Gasses, McGraw-Hill, New York
  14. Gombosi, T. I., 1994, Gaskinetic Theory, Cambridge University Press, New York
  15. Demirdzic, I. and Muzaferija, S., 1995, 'Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology,' Comput. Methods Appl. Mech. Engrg., Vol. 125, pp. 235-255 https://doi.org/10.1016/0045-7825(95)00800-G
  16. Demirdzic, I., Lilek, Z. and Peric, M., 1993, 'A Collocated Finite Volume Method for Predicting Flows at All Speeds,' Int. J. Numer. Meth. Flukds, Vol. 16, pp. 1029-1050 https://doi.org/10.1002/fld.1650161202
  17. Rincon, J. and Elder, R., 1997, 'A High-Resolution Pressure-based Method for Compressible Flows,' Comput. Fluids, Vol. 26, No. 3, pp.217-231 https://doi.org/10.1016/S0045-7930(96)00037-0
  18. Anderson, W. K., and Bonhaus, D. L., 1994, 'An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids,' Computers Fluids, Vol. 23, No. 1, pp. 1-21 https://doi.org/10.1016/0045-7930(94)90023-X
  19. Jessee, J. P. and Fiveland, W. A., 1996, 'A Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-orthogonal Grids,' Int. J. Numer. Meth. Fluids, Vol. 23, pp.271-293 https://doi.org/10.1002/(SICI)1097-0363(19960815)23:3<271::AID-FLD423>3.0.CO;2-C
  20. Wu, J. S. and Tseng, K. C., 2001, 'Analysis of Micro-Scale Gas Flows with Fressure Boundaries Using Direct Simulation Monte Carlo Method,' Computers Fluids, Vol. 30, pp. 711-735 https://doi.org/10.1016/S0045-7930(00)00029-3