• Title/Summary/Keyword: Wall Voltage

Search Result 206, Processing Time 0.031 seconds

Optimal cell structure of a wall-cathode and wall auxiliary anode for high performance plasma display panel (벽형의 음극 전극과 보조 전극을 갖는 고효율 플라즈마 표시기의 최적 전극 구조에 관한연구)

  • 신범제;정희섭;서정현;황기웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.33-42
    • /
    • 1997
  • In this paper, a new structure for a dC plasma display pane(PDP) with a wall-catode and a wall-auxilizry anode has been suggested. The wall-cathode with a sufficient discharge area maximizes the discharge volume. The auxiliary anode surrounding the discharge region makes the effective control of the charged particles possible. We have investigated the cahracteristics of the new cell structure with a 2-dimensional computer simulation and a micro gap discharge system, and compared experimentally with those of previous cell structure. The new cell structure with the wall-cathode and auxiliary wall-anode turned out to have improved luminance, discharge forming time and sustain voltage.

  • PDF

Observation of the Spatiotemporal Variation of Wall Charge Distribution during Reset Period in an ac POP cell

  • Jeong, Dong-Cheol;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.756-759
    • /
    • 2003
  • We measure the spatiotemporal wall charge distributions on sustain and address electrodes during reset period in an ac PDP cell using the longitudinal electro-optic amplitude modulation method. We apply several reset waveforms like as ramp, exponentially growing and high voltage pulse, and compare the wall charge characteristics on address electrode as well as sustain electrodes for each reset waveforms.

  • PDF

Influence of Sustain Pulse-Width on the Electrical and Optical characteristics in AC-PDPs

  • Jeong, Y.W.;Cho, T.S.;Kim, T.Y.;Choi, M.C.;Ahn, J.C.;Jeong, J.M.;Lim, J.Y.;Choi, S.H.;Chong, M.W.;Kim, S.S.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Kang, S.O.;Cho, G.S.;Choi, E.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.155-158
    • /
    • 2000
  • Influence of sustain pulse-width on electro-luminous efficiency is experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and rising time of 300 ns has been used in the experiment. It is found that the firing voltage is decreased as the pulse-width is increased from 2 ${\mu}s$ to 8 ${\mu}s$ with sweeping frequency range of 10 kHz to 50 kHz. It has been found that the optimal sustain pulse-width is in the range of $3{\sim}4{\mu}s$ under driving frequency range of 30 kHz and 50 kHz, based on observation of memory coefficient, wall charge, and wall voltage as well as luminous efficiency.

  • PDF

Influence of Sustain Pulse-width on Electrical Characteristics and Luminous Efficiency in Surface Discharge of AC-PDP

  • Jeong, Yong-Whan;Jeoung, Jin-Man;Choi, Eun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.276-279
    • /
    • 2005
  • Influences of sustain pulse-width on electrical characteristics and luminous efficiency are experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and fixed rising time of 300 ns has been used in the experiment. It is found that the memory coefficient is significantly increased at the critical pulse-width. And the wall charges and wall voltages as well as capacitances are experimentally measured by Q- V analysis method along with the voltage margin relation, in terms of the sustain pulse-width in the range of $1{\mu}s$ to $5{\mu}s$ under driving frequency of 10 kHz to 180 kHz. And the luminous efficiency is also experimentally investigated in above range of sustain pulse-width with driving frequency of 10 kHz to 180 kHz. It is noted that the luminous efficiency for 10 kHz and 180 kHz are 1.29 1m/W and 0.68 1m/W respectively, since the power consumption for 10 kHz is much less than that for 180 kHz. It has been concluded that the optimal sustain pulse-width is in the range of $2.5 {\~}4.5{\mu}s$ under driving frequency range of 10 kHz and 60 kHz, and in the range of $1.5 {\~} 2.5{\mu}s$ under driving frequency range of 120 kHz and 180 kHz based on observation of memory coefficient, and wall voltage as well as luminous efficiency.

Dose Reduction of the Adolescent Female Breast during Scoliosis Radiography (청소년기 여성의 척추측만증 검사에서 유방입사선량 저감효과)

  • Jin, Gye Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.373-379
    • /
    • 2018
  • The purpose of this study was to investigate quantitative data on the difference in breast entrance surface dose with changes in focus-film distance, patient posture (anteroposterior-posteroanterior), thoracic wall thickness, rib bone thickness, lung tissue thickness, tube voltage, and high-voltage rectification method in Whole Spine Scanography, which is necessary for the treatment of scoliosis patients. Given a tube voltage of 90 kVp, kerma of 0.1 mGy, focus-film distance of 260 cm, tube voltage ripple rate of 0, filter thickness of 3.5 mm, and thickness of patient's thoracic wall of 120 mm as an X-ray exposure condition, from the simulation results using the Simulation of X-ray Spectra program to confirm the reduction effect of breast entrance surface dose according to the patient's posture (AP and PA), there was a dose reduction effect in aluminum filter thickness of 2.6 times at 3.5 mm, 25.7 times the thoracic wall thickness at 120 mm, 1.43 times higher tube voltage, and 0 to 1.14 times the tube voltage ripple rate. The total dose reduction effect was about 109 times. In order to confirm the dose reduction effect of RANDO phantom posture (AP and PA), from the results of the measurements taken under the conditions that the focus-film distance was 260 cm, the tube voltage was 90 kVp, the tube current was 270 mA, the exposure time was 0.31 sec, and the tube voltage ripple rate of X-ray generators was 0, the entrance surface dose reduction effect of the breast in the PA position was found to be 20.56 times lower than that of the AP position.

Calculation of Concrete Shielding Wall Thickness for 450 kVp X-ray Tube with MCNP Simulation and Result Comparison with Half Value Layer Method Calculation (MCNP 시뮬레이션을 통한 450 kVp 엑스레이 튜브의 콘크리트 차폐벽 두께 계산 및 반가층 방법을 이용한 계산과의 결과 비교)

  • Lee, Sangheon;Hur, SamSurk;Lee, Eunjoong;Kim, Chankyu;Cho, Gyu-seong
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal $0.02mGy\;wk^{-1}$ on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal. Essentially same result was obtained from the application of HVL method except that it suggest the need of additional 5 cm concrete wall thickness. Therefore, employing the result from HVL method calculation as an conservative upper limit of concrete shielding wall thickness was found to be useful; It would be easy, economic, and reasonable way to set shielding wall thickness.

Study on the Address Discharge Characteristics for the Improvement of the Mis-firing Problem in AC PDP (AC PDP의 오방전 개선을 위한 어드레스 방전 특성 연구)

  • Jeon, Won-Jae;Kim, Dong-Hun;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1151-1156
    • /
    • 2009
  • Unstable sustain discharges can occur at the bottom cells of the panel at high temperature. To solve this problem, the wall charge variation during an address period was investigated. A test panel of 7.5 inch XGA level was used and one green cell was measured. In order to realize operating condition equal to that of the bottom cells of 50 inch panel, the addressing stress pulses are applied. It seems that the resultant wall charge loss during address period increased with increase of stress time, temperature, pressure and Xe %. Wall charge loss increases with potential difference between scan electrode and address electrode, therefore wall charge loss can be minimized by the increase of scan voltage during address period.

The characteristics of wall charge on the dependence of aging time in an AC Plasma Display Panel

  • Kim, Bhum-Joon;Cho, Hyung-Joon;Lee, Seung-Hun;Shin, Bhum-Jae;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.710-713
    • /
    • 2003
  • The wall charge is major factor to determine the discharge characteristics. The minimum sustain voltage related to the wall charge decay were investigated as a function of aging time in AC plasma display panel. For the long time scale, the wall charge decay time is dependent on the aging time. The inverse time scale of the wall charge decay has the maximum value at around 3 hours aging time and then fell down.

  • PDF

Optically compensated bend cell with pixel-isolating polymer wall for a flexible display application

  • Lee, Seong-Ryong;Lee, Joong-Ha;Jang, Hong-Jeek;Jo, Jin-Seok;Yoon, Tae-Hoon;Kim, Jae-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.207-210
    • /
    • 2007
  • We fabricated an optically compensated bend cell with pixel-isolating polymer wall. The polymer wall was formed by phase separation of LCs and UVcurable polymer. The fabricated cell had initially ${\pi}-twist$ state. It showed low driving voltage, wide viewing angle and fast response properties. Also, polymer wall provided the mechanical stability preventing distortion of a display image from pressure.

  • PDF

Comparision Study Between Modeling and Experiment of the Breakdown Voltage for AC Plasma Display Panel (AC 플라즈마 디스플레이패널의 방전개시전압에 모델과 실험의 비교에 관한 연구)

  • 박장식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1039-1044
    • /
    • 2000
  • Breakdown voltage model and expertiments are compared for discharge cells of AC plasma display panel. In the model, discharge paths are assumed to be initial electric field lines and the one-dimensional continuity equation is applied to the charged particle transport at each field line. The comparisons are performed in the wide range of gas pressure (50-600torr), Xe partial pressure over total pressure (1-6%), sustain electrode gap(100-1000$\mu\textrm{m}$), wall height(130, 300$\mu\textrm{m}$), and voltage pulse width(2-6${\mu}$s). The presented breakdown voltage model well agree with experiments in the above wide range. The increase of breakdown voltage with the decrease of the width(L) of protruding electrode is also described by the model.

  • PDF