DOI QR코드

DOI QR Code

Dose Reduction of the Adolescent Female Breast during Scoliosis Radiography

청소년기 여성의 척추측만증 검사에서 유방입사선량 저감효과

  • Received : 2018.05.20
  • Accepted : 2018.06.30
  • Published : 2018.06.30

Abstract

The purpose of this study was to investigate quantitative data on the difference in breast entrance surface dose with changes in focus-film distance, patient posture (anteroposterior-posteroanterior), thoracic wall thickness, rib bone thickness, lung tissue thickness, tube voltage, and high-voltage rectification method in Whole Spine Scanography, which is necessary for the treatment of scoliosis patients. Given a tube voltage of 90 kVp, kerma of 0.1 mGy, focus-film distance of 260 cm, tube voltage ripple rate of 0, filter thickness of 3.5 mm, and thickness of patient's thoracic wall of 120 mm as an X-ray exposure condition, from the simulation results using the Simulation of X-ray Spectra program to confirm the reduction effect of breast entrance surface dose according to the patient's posture (AP and PA), there was a dose reduction effect in aluminum filter thickness of 2.6 times at 3.5 mm, 25.7 times the thoracic wall thickness at 120 mm, 1.43 times higher tube voltage, and 0 to 1.14 times the tube voltage ripple rate. The total dose reduction effect was about 109 times. In order to confirm the dose reduction effect of RANDO phantom posture (AP and PA), from the results of the measurements taken under the conditions that the focus-film distance was 260 cm, the tube voltage was 90 kVp, the tube current was 270 mA, the exposure time was 0.31 sec, and the tube voltage ripple rate of X-ray generators was 0, the entrance surface dose reduction effect of the breast in the PA position was found to be 20.56 times lower than that of the AP position.

본 논문에서는 척추측만증 환자의 진료를 위하여 필요한 Whole Spine Scanography 검사에서 촬영거리, 환자자세(전후 후전 방향), 흉부벽두께, 갈비뼈두께, 폐조직두께, 관전압, 고전압정류방식의 변화에 따른 유방의 입사선량의 차이에 대한 정량적인 자료를 제시하고자 하였다. 환자의 자세(전후방향과 후전방향)에 따른 유방 입사선량의 저감효과를 확인하기 위하여 관전압 90 kVp, 커마 0.1 mGy, 촬영거리 260 cm, 관전압의 리플율이 0인 인버터정류방식, 필터의 두께 3.5 mm, 환자의 흉벽의 두께 120 mm를 조건으로 Simulation of X-ray Spectra program을 이용하여 시뮬레이션 하였다. 그 결과 알루미늄 필터 두께 3.5 mm에서 2.6배, 흉벽의 두께 120 mm에서 25.7배, 고 관전압에서 1.43배, 관전압 리플율 0에서 1.14배의 선량 저감효과가 있었다. 각각의 입사 선량저감효과의 총합은 약 109배이었다. RANDO phantom의 자세(전후방향과 후전방향)에 따른 선량 저감효과를 확인하기 위하여 촬영거리 260 cm, 관전압 90 kVp, 관전류 270 mA, 촬영시간 0.31 sec, 관전압의 리플율이 0인 인버터정류방식, 필터의 두께 3.5 mm을 조건으로 측정한 결과 유방의 입사선량은 전후 방향에 비하여 후전방향이 평균 20.56배의 선량 저감효과가 있었다.

Keywords

References

  1. S. W. Suh, S. H. Lee, C. Y. Hur, J. C. Yoo, C. S. Kang, J. H. Wang, "Idiopathic Scoliosis in Korean Middle School Students - Prevalence study-," The Journal of the Korean Orthopaedic Association, Vol 36, No 1, pp. 33-37, 2001.
  2. E. J. Kim, J. H. Kim, "Scoliosis Progression according to the Growth of Middle School Students," Journal of Korean Community Nursing, Vol. 14, No. 3, pp. 479-478, 2003.
  3. S. M. Jung, K. H. Lee, Y. K. Song, C. Y. Jun, “A Recent Study of Conservative Treatment of Idiopathic Scoliosis,” The Journal of Korea CHUNA Manual Medicine, Vol. 6, No. 1, pp. 67-84, 2005.
  4. M. S. Park, C. S. Lee, Y. T. Kim, S. H. Ko, J. Eo, S. D. Cho, "Idiopathic Scoliosis in the Eleven Years Old - Prevalence Study-," The Journal of the Korean Orthopaedic Association, Vol. 41, No. 2, pp. 263-267, 2006. https://doi.org/10.4055/jkoa.2006.41.2.263
  5. K. C. An, D. H. Park, G. M. Kong, J. Y. Kim, S. Y. Jin, W. S. Lee, D. Y. Kim, E. J. Ha, K. Y. Lee, W. W. Park, J. S. Lee, "Prevalence Study of Adolescent Idiopathic Scoliosis in Ten-, Eleven-Year Olds for 10 Years," The Journal of the Korean Orthopaedic Association Vol. 50, No. 1, pp. 25-30, 2015. https://doi.org/10.4055/jkoa.2015.50.1.25
  6. G. E. Choi, J. Y. Jung, J. J. Kim, J. S. Jang, G. H. Lee, C. H. Park, “The usefulness Evaluation of C-spine filter device in Whole spine Lateral radiography,” The Korean Society of Radiological Imaging Technology, Vol. 13, No. 1, pp. 171-176, 2016.
  7. S. H. Park, C. R. Ji, S. M. Yun, J. S. Im, S. K. Park,"Evaluation of the distortion rate for different ways of taking radiographs of the long bone," The Korean Society of Radiological Imaging Technology, Vol. 13, No. 1, pp. 91-97, 2016.
  8. J. S. Kim, D. N. Seo, S. M. Kwon, J. M. Kim, “Patient Radiation Exposure Dose Evaluation of Whole Spine Scanography Due to Exposure Direction,” Journal of Radiological Science and Technology, Vol. 38, No. 1, pp. 1-6, 2016. https://doi.org/10.17946/JRST.2015.38.1.01
  9. J. J. Kim, S. W. Jang, J. H. Park, K. S. Lee, D. Y. Ha, “Evaluation of Organ and Effective Dose using A PC-Based Monte Carlo Program in AEC Mode and Fix Mode for the whole spine antero-posterior radiography,” Korean journal of digital imaging in medicine, Vol. 14, No. 2, pp. 23-31, 2012.
  10. http://www.kdi.re.kr/policy/ep_view.jsp?idx=161218&&pp=100&pg=2 (Health Insurance Review & Assessm ent Service)
  11. http://www.index.go.kr/potal/stts/idxMain/selectPoSttsIdxMainPrint.do?idx_cd=2770&board_cd=INDX_001 (Ministry of Health and Welfare)
  12. J. Valentin, “The 2007 recommendations of the international commission on radiological protection,” Elsevier, Vol. 37, No. 2-4, pp. 1-133, 2007.
  13. J. P. Lescreve, R. P. Van Tiggelen, J. Lamoureux," Reducing the radiation dosage in patients with a scoliosis. International orthopaedics," Vol. 13, No. 1, pp. 47-50, 1989. https://doi.org/10.1007/BF00266722
  14. A. Ben-Shlomo, G, Bartal, S. Shabat, M. Mosseri, “Effective dose and breast dose reduction in paediatric scoliosis X-ray radiography by an optimal positioning,” Radiation protection dosimetry, Vol. 156, No. 1, pp. 30-36, 2013. https://doi.org/10.1093/rpd/nct038
  15. K. L. Bontrager, J. Lampignano, "Textbook of Radiographic Positioning and Related Anatomy-E-Book," Elsevier Health Sciences, Vol. 340, pp. 1-826, 2013.
  16. A. R. Levy, M. S. Goldberg, N. E. Mayo, J. A. Hanley, B. Poitras, “Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis,” Spine, Vol. 21, No. 13, pp. 1540-1547, 1996. https://doi.org/10.1097/00007632-199607010-00011
  17. https://www.fda.gov/Radiation-EmittingProducts/ResourcesforYouRadiationEmittingProducts/ucm252765.htm (Reducing Patient Exposure During Scoliosis Radiography)
  18. E, Schroeder, C. Valdez, A. Krauthamer, N. Khati, J. Rasmus, R. Amdur, B. Sarani, "Average chest wall thickness at two anatomic locations in trauma patients. Injury," Vol. 44, No. 9, pp. 1183-1185, 2013. https://doi.org/10.1016/j.injury.2013.03.027
  19. H. T. Harcke, L. A. Pearse, A. D. Levy, J. M., Getz, S. R. Robinson, “Chest wall thickness in military personnel: implications for needle thoracentesis in tension pneumothorax,” Military medicine, Vol. 172, No. 12, pp. 1260-1263, 2007. https://doi.org/10.7205/MILMED.172.12.1260
  20. E. G. Chekan, J. F. Cummings, I. Mabe, S. Hunter, J. W. Clymer, "Thickness of Cadaveric Human Lung Tissue," Surgical technology international, Vol. 29, PP. 207-213, 2016.
  21. R. S. Solecki, R. L. Solecki, A. P. Agelarakis, "The proto-neolithic cemetery in Shanidar Cave," Texas A&M University Press, pp. 49, 2004.
  22. K. S. Chon, “Monte Carlo Simulation for Radiation Protection Sheets of Pb-Free,” The Korea Society of Radiology, Vol. 11, No. 4, pp. 188-195, 2017.
  23. https://www.oem-xray-components.siemens.com/x-ray-spectra-simulation# (Online tool for the simulation of X-ray Spectra)
  24. J. M. Boone, J. A. Seibert, “An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV,” Medical Physics, Vol. 24, No. 11, pp. 1661-1670, 1997. https://doi.org/10.1118/1.597953
  25. C. S. Lim, S. B. Lee, G. H. Jin, “Performance of optically stimulated luminescence Al2O3 dosimeter for low doses of diagnostic energy X-rays,” Applied Radiation and Isotopes, Vol. 69, No. 10, pp. 1486-1489, 2011. https://doi.org/10.1016/j.apradiso.2011.06.001