• Title/Summary/Keyword: Wafer-Level Lens

Search Result 10, Processing Time 0.038 seconds

Wafer-level Fabrication of Ball Lens by Cross-cut and Reflow of Wafer-bonded Glass on Silicon

  • Lee, Dong-Whan;Oh, Jin-Kyung;Choi, Jun-Seok;Lee, Hyung-Jong;Chung, Woo-Nam
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2010
  • Novel wafer-level fabrication of a glass ball-lens is realized for optoelectronic applications. A Pyrex wafer is bonded to a silicon wafer and cross-cut into a square-tile pattern, followed by wet-etching of the underlying silicon. Cubes of Pyrex on the undercut silicon are then turned into ball shapes by thermal reflow, and separated from the wafer by further etching of the silicon support. Radial variation and surface roughness are measured to be less than ${\pm}3\;{\mu}m$ and ${\pm}1\;nm$, respectively, for ball diameter of about $500\;{\mu}m$. A surface defect on the ball that is due to the silicon support is shown to be healed by using a silicon-optical-bench. Optical power-relay of the ball lens showed the maximum efficiency of 65% between two single-mode fibers on the silicon-optical-bench.

Analysis of the shrinkage and warpage of Wafer lens during UV curing (Lens 성형시 UV경화 반응에 따른 수축 및 변형 대한 해석적 접근)

  • Park, Sihwan;Moon, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6464-6471
    • /
    • 2014
  • The UV curing method is a popular process for lens molding on a unit wafer. This process, however, has several drawbacks including wafer adhesion during the ejection process after curing, errors in lens shape and wafer warpage due to material shrinkage during the curing process, and lens centering errors on both sides of a wafer. Among these, the lens shape error and warpage are influenced directly by the UV curing process due to factors including the UV radiation uniformity, the degree of cure according to UV intensity, and the shrinkage characteristics of the material. Therefore, a theory is needed not only to understand the change in the material characteristics, such as the shrinkage rate due to the curing reaction, but also to establish a model. In addition, an analysis system is needed to realize the model. This study proposes a new analysis method for the wafer lens molding process by Comsol modeling. This method was verified by comparing the results with those of the actual process.

A Study on the Effect of Shrinkage on Lens Deformation in Optical Lens Manufacturing Process Using Thermosetting Resin Material (열경화성 수지 재료를 이용한 광학 렌즈 제조공정에서 렌즈 변형에 대한 수축률이 영향에 관한 연구)

  • Park, Si Hwan
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • In order to reduce the manufacturing costs of the glass lens, it is necessary to manufacture a lens using a UV curable resin or a thermosetting resin, which is a curable material, in order to replace a glass lens. In the case of forming a lens using a thermosetting material, it is necessary to form several lenses at once using the wafer-level lens manufacturing technologies due to the long curing time of the material. When a lens is manufactured using a curable material, an error in the shape of the lens due to the shrinkage of the material during the curing process is an important cause of defects. The major factors for these shape errors and deformations are the shrinkage and the change of mechanical properties in the process of changing from a liquid material during curing to a solid state after complete curing. Therefore, it is necessary to understand the curing process of the material and to examine the shrinkage rate and change of physical properties according to the degree cure. In addition, it is necessary to proceed with CAE for lens molding using these and to review problems in lens manufacturing in advance. In this study, the viscoelastic properties of the material were measured during the curing process using a rheometer. Using the results, Rheological investigation of cure kinetics was performed. At the same time, The shrinkage of the material was measured and simple mathematical models were created. And using the results, the molding process of a single lens was analyzed using Comsol, a commercial S/W. In addition, the experiment was conducted to compare and verify the CAE results. As a result, it was confirmed that the shrinkage rate of the material had a great influence on the shape precision of the final product.

A Study on the Release Characteristics During Wafer-Level Lens Molding Using Thermosetting Materials (열경화성 소재를 사용한 웨이퍼 레벨 렌즈 성형 중 이형 특성에 관한 연구)

  • Park, Si-Hwan;Hwang, Yeon;Kim, Dai-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.461-467
    • /
    • 2021
  • Among the defect factors that can occur when a wafer-level lens is molded using a thermosetting material, the mold sticking problem of a molded lens during the release process can damage the molded substrate and deform the substrate at the wafer level. An experiment was conducted to examine the factors affecting the demolding force in the lens forming process. The demolding force was examined according to the coating material of the molds. The mold was surface-treated with ITO and Ti, followed by plasma treatment in an O2 atmosphere. A DLC coating was then performed, and the curing and releasability were examined. A coating method for the pull-off experiment was selected based on the results. To measure the demolding force according to the curing process conditions, a method of curing at a constant pressure and a method of curing at a constant position were applied. As a result, the TiO2 surface treatment reduced the release force. When cured by controlling the location, curing shrinkage can reduce the adhesion energy of the interface during curing, resulting in better demolding.

Development of Integrated Optical Pickup for Small Form Factor Optical Disc Drive (Small Form Factor 광 디스크 드라이브용 초소형 집적형 광픽업 개발)

  • Cho, Eun-Hyoung;Sohn, Jin-Seung;Lee, Myung-Bok;Suh, Sung-Dong;Kim, Hae-Sung;Kang, Sung-Mook;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.163-168
    • /
    • 2006
  • Small form factor optical pickup (SFFOP) corresponding to BD specifications is strongly proposed for the next-generation portable storage device. In order to generate SFFOP, small sized optical pickup has been fabricated. We have developed a small sited optical pickup that is called the integrated optical pickup (IOP). The fabrication method of this system is mainly dependant on the use of the wafer based micro fabrication technology, which has been used in MEMS process such as photolithography, reactive ion etching, wafer bonding, and packaging process. This approach has the merits for mass production and high assembling accuracy. In this study, to generate the small sized optical pickup for high recording capacity, IOP corresponding to BD specifications has been designed and developed, including three main parts, 1) design, fabrication and evaluation of objective lens unit, 2) design and fabrication of IOP and 3) evaluation process of FES and TES.

  • PDF

A clindrical post dipping method to fabricate PDMS microlens array (CPD 방식을 통한 PDMS lens의 제작)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Ha, Joon-Geun;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1495_1496
    • /
    • 2009
  • A cylindrical post dipping (CPD) method to fabricate the PDMS microlens arrays is presented in this paper. The proposed CPD method is based on the surface tension effect. 2 mm gap and gapless lenses with 2 mm diameter are fabricated and characterized geometically. Both profiles of the fabricated microlens are well-fitted with ideal lens profile. The surface roughness average of the fabricated lens is measured to be 1.953 nm. The focal length of 2mm gap lenses and the gapless lenses is calculated to be 17.00 mm with 0.65 mm standard deviation and 29.88 mm with 2.58 mm standard deviation, respectively. The proposed CPD method can be applied to wafer level lens fabrication due to its simplicity and versatility.

  • PDF

Rectangular Microlens array for Multi Chip LED Packaing (LED 패키지를 위한 사각 형상의 마이크로 렌즈)

  • Lim C.H.;Jeung W.K.;Choi S.M.;Oh Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.882-884
    • /
    • 2005
  • A new rectangular shape microlens array having high sag for solid-state lighting is presented. Proposed microlens, which has high sag, over $375{\mu}m$ and large diameter, over 3 mm can enormously enhance output optical extraction efficiency. Rectangular shape of microlens can maximize the fill factor of light-emitting-diode (LED) package and minimize the optical loss at the same time. This wafer level microlens array is fabricated on LED package. It has many advantages in optical properties, low cost, high aligning accuracy, and mass production.

  • PDF

Study on Fiber Laser Annealing of p-a-Si:H Deposition Layer for the Fabrication of Interdigitated Back Contact Solar Cells (IBC형 태양전지 제작을 위한 p-a-Si:H 증착층의 파이버 레이저 가공에 관한 연구)

  • Kim, Sung-Chul;Lee, Young-Seok;Han, Kyu-Min;Moon, In-Yong;Kwon, Tae-Young;Kyung, Do-Hyun;Kim, Young-Kuk;Heo, Jong-Kyu;Yoon, Ki-Chan;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.430-430
    • /
    • 2008
  • Using multi plasma enhanced chemical vapor deposition system (Multi-PECVD), p-a-Si:H deposition layer as a $p^+$ region which was annealed by laser (Q-switched fiber laser, $\lambda$ = 1064 nm) on an n-type single crystalline Si (100) plane circle wafer was prepared as new doping method for single crystalline interdigitated back contact (IBC) solar cells. As lots of earlier studies implemented, most cases dealt with the excimer (excited dimer) laserannealing or crystallization of boron with the ultraviolet wavelength range and $10^{-9}$ sec pulse duration. In this study, the Q-switched fiber laser which has higher power, longer wavelength of infrared range ($\lambda$ = 1064 nm) and longer pulse duration of $10^{-8}$ sec than excimer laser was introduced for uniformly deposited p-a-Si:H layer to be annealed and to make sheet resistance expectable as an important process for IBC solar cell $p^+$ layer on a polished n-type Si circle wafer. A $525{\mu}m$ thick n-type Si semiconductor circle wafer of (100) plane which was dipped in a buffered hydrofluoric acid solution for 30 seconds was mounted on the Multi-PECVD system for p-a-Si:H deposition layer with the ratio of $SiH_4:H_2:B_2H_6$ = 30:120:30, at $200^{\circ}C$, 50 W power, 0.2 Torr pressure for 20 minutes. 15 mm $\times$ 15 mm size laser cut samples were annealed by fiber laser with different sets of power levels and frequencies. By comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 50 mm/s of mark speed, 160 kHz of period, 21 % of power level with continuous wave mode of scanner lens showed the features of small difference of lifetime and lowering sheet resistance than before the fiber laser treatment with not much surface damages. Diode level device was made to confirm these experimental results by measuring C-V, I-V characteristics. Uniform and expectable boron doped layer can play an important role to predict the efficiency during the fabricating process of IBC solar cells.

  • PDF