• Title/Summary/Keyword: Wafer thickness

Search Result 464, Processing Time 0.048 seconds

The Study for the CMP Automation with Nova Measurement System (NOVA System을 이용한 CMP Automation에 관한 연구)

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.176-180
    • /
    • 2001
  • There are several factors causing re-work in CMP process such as improper polish time calculation by operator. removal rate decline of the polisher, unstable in-suit pad conditioning, slurry supply module problem and wafer carrier rotation inconsistancy. And conclusively those fundimental reason for the re-work rate increasement is mainly from the cycle time delay between wafer polish and post measurement. Therefore, Wafer thickness measurement in wet condition could be able to remove those improper process conditions which may happen during the process in comparison with the conventional dried wafer measurement system and it can be able to reduce the CMP process cycle time. CMP scrap reduction by overpolish, re-work rate reduction, thickness control efficiency also can be easily achieved. CMP Equipment manufacturer also trying to develop integrated system which has multi-head & platen, cleaner, pre & post thickness measure and even control the polish time from the calculated removal rate of each polishing head by software. CMP re-work problem such as over & under polish by target thickness may result in the cycle time delay. By reducing those inefficient factors during the process and establish of the automatic process control, CLC system need to be adopted to maximize the process performance. Wafer to Wafer Polish Time Feed Back Control by measuring the wafer right after the polish shorten the polish time calculation for the next wafer and it lead to the perfact Post CMP target thickness control capability. By Monitoring all of the processed the wafer, CMP process will also be stabilize itself.

  • PDF

Analysis on Bowing and Formation of Al Doped P+ Layer by Changes of Thickness of N-type Wafer and Amount of Al Paste (N타입 결정질 실리콘 웨이퍼 두께 및 알루미늄 페이스트 도포량 변화에 따른 Bowing 및 Al doped p+ layer 형성 분석)

  • Park, Tae Jun;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.16-20
    • /
    • 2015
  • In this study, in order to improve the efficiency of n-type monocrystalline solar cells with an Alu-cell structure, we investigate the effect of the amount of Al paste in thin n-type monocrystalline wafers with thicknesses of $120{\mu}m$, $130{\mu}m$, $140{\mu}m$. Formation of the Al doped $p^+$ layer and wafer bowing occurred from the formation process of the Al back electrode was analyzed. Changing the amount of Al paste increased the thickness of the Al doped $p^+$ layer, and sheet resistivity decreased; however, wafer bowing increased due to the thermal expansion coefficient between the Al paste and the c-Si wafer. With the application of $5.34mg/cm^2$ of Al paste, wafer bowing in a thickness of $140{\mu}m$ reached a maximum of 2.9 mm and wafer bowing in a thickness of $120{\mu}m$ reached a maximum of 4 mm. The study's results suggest that when considering uniformity and thickness of an Al doped $p^+$ layer, sheet resistivity, and wafer bowing, the appropriate amount of Al paste for formation of the Al back electrode is $4.72mg/cm^2$ in a wafer with a thickness of $120{\mu}m$.

The Study for the CMP Automation wish Nova Measurement system (NOVA System을 이용한 CMP Automation에 관한 연구)

  • 김상용;정헌상;박민우;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.176-180
    • /
    • 2001
  • There are several factors causing re-work in CMP process such as improper polish time calculation by operator, removal rate decline of the polisher, unstable in-suit pad conditioning, slurry supply module problem and wafer carrier rotation inconsistency. And conclusively those fundimental reason for the re-work rate increasement is mainly from the cycle time delay between wafer polish and post measurement. Therefore, Wafer thickness measurement in wet condition could be able to remove those improper process conditions which may happen during the process in comparison with the conventional dried wafer measurement system and it can be able to reduce the CMP process cycle time. CMP scrap reduction by overpolish, re-work rate reduction, thickness control efficiency also can be easily achieved. CMP Equipment manufacturer also trying to develop integrated system which has multi-head & platen, cleaner, pre & post thickness measure and even control the polish time from the calculated removal rate of each polishing head by software. CMP re-work problem such as over & under polish by target thickness may result in the cycle time delay. By reducing those inefficient factors during the process and establish of the automatic process control, CLC system need to be adopted to maximize the process performance. Wafer to Wafer Polish Time Feed Back Control by measuring the wafer right after the polish shorten the polish time calculation for the next wafer and it lead to the perfect Post CMP target thickness control capability. By Monitoring all of the processed the wafer, CMP process will also be stabilize itself.

  • PDF

Development of Real Time Thickness Measurement System of Thin Film for 12" Wafer Spin Etcher (12" 웨이퍼 Spin etcher용 실시간 박막두께 측정장치의 개발)

  • 김노유;서학석
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2003
  • This paper proposes a thickness measurement method of silicon-oxide and poly-silicon film deposited on 12" silicon wafer for spin etcher. Halogen lamp is used as a light source for generating a wide-band spectrum, which is guided and focused on the wafer surface through a optical fiber cable. Interference signal from the film is detected by optical sensor to determine the thickness of the film using spectrum analysis and several signal processing techniques including curve-fitting and adaptive filtering. Test wafers with three kinds of priori-known films, polysilicon(300 nm), silicon-oxide(500 nm) and silicon-oxide(600 nm), are measured while the wafer is spinning at 20 Hz and DI water flowing on the wafer surface. From experiment results the algorithm presented in the paper is proved to be effective with accuracy of maximum 0.8% error.rror.

  • PDF

3D Surface and Thickness Profile Measurements of Si Wafers by Using 6 DOF Stitching NIR Low Coherence Scanning Interferometry (6 DOF 정합을 이용한 대 영역 실리콘 웨이퍼의 3차원 형상, 두께 측정 연구)

  • Park, Hyo Mi;Choi, Mun Sung;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • In this investigation, we describe a metrological technique for surface and thickness profiles of a silicon (Si) wafer by using a 6 degree of freedom (DOF) stitching method. Low coherence scanning interferometry employing near infrared light, partially transparent to a Si wafer, is adopted to simultaneously measure the surface and thickness profiles of the wafer. For the large field of view, a stitching method of the sub-aperture measurement is added to the measurement system; also, 6 DOF parameters, including the lateral positioning errors and the rotational error, are considered. In the experiment, surface profiles of a double-sided polished wafer with a 100 mm diameter were measured with the sub-aperture of an 18 mm diameter at $10\times10$ locations and the surface profiles of both sides were stitched with the sub-aperture maps. As a result, the nominal thickness of the wafer was $483.2{\mu}m$ and the calculated PV values of both surfaces were $16.57{\mu}m$ and $17.12{\mu}m$, respectively.

Development of magnetron sputtering system for Al thin film decomposition with high uniformity (고균일 Al 박막 증착을 위한 magnetron sputtering system 개발)

  • Lee, J.H.;Hwang, D.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.165-169
    • /
    • 2008
  • It is very important to decompose uniformly the metal film in semiconductor devices process. The thickness uniformity of the ITO film by standard magnetron sputtering system are about $\pm4%\sim\pm5%$ and the center of the wafer is more thick than the edge of the wafer. We designed and made the discharge electrode structure and controlled the direction of sputtering materials in magnetron sputtering system. The thickness uniformity are increased to $\pm0.8\sim1.3%$ in 4" wafer using the new sputtering gun in magnetron sputtering system. In wafer to wafer thickness uniformity, $\pm$5.3% are increased to $\pm$1.5% using the new sputtering gun. The thickness uniformity of the Al film are about $\pm$1.0% using the new sputtering gun in magnetron sputtering system.

Evaluation of Fracture Strength of Silicon Wafer for Semiconductor Substrate by Point Load Test Method (점하중시험법에 의한 반도체 기판용 실리콘 웨이퍼의 파괴강도 평가)

  • Lee, Seung-Mi;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of grinding process and thickness on the fracture strength of silicon die used for semiconductor substrate. Method: Silicon wafers with different thickness from $200{\mu}m$ to $50{\mu}m$ were prepared by chemical mechanical polishing (CMP) and dicing before grinding (DBG) process, respectively. Fracture load was measured by point load test for 50 silicon dies per each wafer. Results: Fracture strength at the center area was lower than that at the edge area of the wafer fabricated by DBG process, while random distribution of the fracture strength was observed for the CMPed wafer. Average fracture strength of DBGed specimens was higher than that of the CMPed ones for the same thickness of wafer. Conclusion: DBG process can be more helpful for lowering fracture probability during the semiconductor fabrication process than CMP process.

A study on Relationship between Pattern wafer and Blanket Wafer for STI-CMP (STI-CMP 공정을 위한 Pattern wafer와 Blanket wafer 사이의 특성 연구)

  • 김상용;이경태;김남훈;서용진;김창일;이우선;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.211-213
    • /
    • 1999
  • In this paper, we documented the controlling oxide removal amount on the pattern wafer using removal rate and removal thickness of blanket wafer. There was the strong correlation relationship for both(correlation factor:0.7109). So, we could confirm the repeatability as applying for STI CMP process from the obtained linear formular. As the result of repeatability test, the difference of calculated polishing time and actual polishing time was 3.48 seconds based on total 50 lots. If this time is converted into the thickness, it is from 104$\AA$ to 167$\AA$. It is possible to be ignored because it is under the process margin.

  • PDF

Warpage Analysis during Fan-Out Wafer Level Packaging Process using Finite Element Analysis (유한요소 해석을 이용한 팬아웃 웨이퍼 레벨 패키지 과정에서의 휨 현상 분석)

  • Kim, Geumtaek;Kwon, Daeil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.41-45
    • /
    • 2018
  • As the size of semiconductor chip shrinks, the electronic industry has been paying close attention to fan-out wafer level packaging (FO-WLP) as an emerging solution to accommodate high input and output density. FO-WLP also has several advantages, such as thin thickness and good thermal resistance, compared to conventional packaging technologies. However, one major challenge in current FO-WLP manufacturing process is to control wafer warpage, caused by the difference of coefficient of thermal expansion and Young's modulus among the materials. Wafer warpage induces misalignment of chips and interconnects, which eventually reduces product quality and reliability in high volume manufacturing. In order to control wafer warpage, it is necessary to understand the effect of material properties and design parameters, such as chip size, chip to mold ratio, and carrier thickness, during packaging processes. This paper focuses on the effects of thickness of chip and molding compound on 12" wafer warpage after PMC of EMC using finite element analysis. As a result, the largest warpage was observed at specific thickness ratio of chip and EMC.