• Title/Summary/Keyword: Wafer Processing

Search Result 231, Processing Time 0.027 seconds

Selective Emitter Effect of porous silicon AR Coatings formed on single crystalline silicon solar cells (단결정 실리콘 태양전지에 형성한 다공성실리콘 반사방지막의 선택적 에미터 특성 연구)

  • Lee, Hyun-Woo;Kim, Do-Wan;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.116-117
    • /
    • 2006
  • We investigated selective emitter effect of Porous Silicon (PSI) as antireflection coatings (ARC). The thin PSi layer, less than 100nm, was electrochemically formed by electrochemical method in about $3{\mu}m$ thick $n^+$ emitter on single crystalline silicon wafer (sc-Si). The appropriate PSi formations for selective emitter effect were carried out a two steps. A first set of samples allowed to be etched after metal-contact processing and a second one to evaporate Ag front-side metallization on PSi layer, by evaluating the I-V features The PSi has reflectance less than 20% in wavelength for 450-1000nm and porosity is about 60%. The cell made after front-contact has improved cell efficiency of about in comparison with the one made after PSi. The observed increase of efficiency for samples with PSi coating could be explained not only by the reduction of the reflection loss and surface recombination but also by the increased short-circuit current (Isc) within selective emitter. The assumption was confirmed by numerical modeling. The obtained results point out that it would be possible to prepare a solar cell over 15% efficiency by the proposed simple technology.

  • PDF

Fabrication of Diffractive Optical Element for Objective Lens of Small form Factor Data Storage Device (초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발)

  • Bae H.;Lim J.;Jeong K.;Han J.;Yoo J.;Park N.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.3-8
    • /
    • 2006
  • The demand fer small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased by using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable fur mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-replication process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the surface profiles of master, mold and molded pattern were measured by optical scanning profiler. The geometrical deviation between the master and the molded DOE was less than $0.1{\mu}m$. The diffraction efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

Low-resistance ohmic contacts to p-$Hg_{0.7}$$Cd_{0.3}$Te (p-$Hg_{0.7}$$Cd_{0.3}$Te에 낮은 저항의 접촉을 얻는 방법에 대한 연구)

  • Kim, Kwan;Chung, Han;Kim, Sung-Chul;Lee, Hee-Chul;Kim, Choong-Ki;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.87-93
    • /
    • 1994
  • Ohmic contacts between Au and p-HgHg_{0.7}Cd_{0.3}Te$ with low specific contact resistance have been obtained. The contact region of the wafer is first pre-heated for 5 seconds in a rapid thermal processing equipment. The temperature reaches a maximum value of about 200$^{\circ}C$ at the end of the 5 seconds. Next, a thin Au film is formed on the contact region by immersing the sample in AuCl$_{3}$ solution. the sample is then post-annealed in the same condition as the pre-heating after Pb/In pad metals are deposited on the electroless Au contacts. The specific contact resistance measured by transmission line model is 5${\times}10^{-3}{\Omega}cm^{2}$ at 80K. RBS and differential Hall measurement data suggest that the above low resistance ohmic contact is ascribed to surface traps and increased gold diffusion rate.

  • PDF

Development of the RF SAW filters based on PCB substrate (PCB 기판을 이용한 RF용 SAW 필터 개발)

  • Lee, Young-Jin;Im, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.8-13
    • /
    • 2006
  • Recent RF SAW filters are made using a HTCC package with a CSP(chip scale Package) technology. This paper describes a development of a new $1.4{\times}1.1\;and\;2.0{\times}1.4mm$ RF SAW liters made by PCB substrate instead of HTCC package, and this technology can reduce the cost of materials down to 40%. We have investigated the multi-layered PCB substrate structures and raw materials to find out the optimal flip-bonding condition between the $LiTaO_3$ wafer and PCB substrates. Also the optimal materials and processing conditions of epoxy laminating film were found out through the experiments which can reduce the bending moment caused by the difference of the thermal expansion between the PCB substrate and laminating film. The new PCB SAW filter shows good electrical and reliability performances with respect to the present SAW filters.

Fabrication of a Large-Area $Hg_{1-x}Cd_{x}$Te Photovoltaic Infrared Detector ($Hg_{1-x}Cd_{x}$Te photovoltaic 대형 적외선 감지 소자의 제작)

  • Chung, Han;Kim, Kwan;Lee, Hee-Chul;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.88-93
    • /
    • 1994
  • We fabricated a large-scale photovoltaic device for detecting-3-5$\mu$m IR, by forming of n$^{+}$-p junction in the $Hg_{1-x}Cd_{x}$Te (MCT) layer which was grown by LPE on CdTe substrate. The composition x of the MCT epitaxial layer was 0.295 and the hole concentration was 1.3${\times}10^{13}/cm^{4}$. The n$^{+}$-p junction was formed by B+ implantation at 100 keV with a does 3${\times}10^{11}/cm^{2}. The n$^{+}$ region has a circular shape with 2.68mm diameter. The vacuum-evaporated ZnS with resistivity of 2${\times}10^{4}{\Omega}$cm is used as an insulating layer over the epitaxial layer. ZnS plays the role of the anti-reflection coating transmitting more than 90% of 3~5$\mu$m IR. For ohmic contacts, gole was used for p-MCT and indium was used for n$^{+}$-MCT. The fabrication took 5 photolithographic masks and all the processing temperatures of the MCT wafer were below 90$^{\circ}C$. The R,A of the fabricated devices was 7500${\Omega}cm^{2}$. The carrier lifetime of the devices was estimated 2.5ns. The junction was linearly-graded and the concentration slope was measured to be 1.7${\times}10^{17}/{\mu}m$. the normalized detectivity in 3~5$\mu$m IR was 1${\times}10^{11}cmHz^{12}$/W, which is sufficient for real application.

  • PDF

Design of a 40 channel SQUID system (40채널 SQUID 시스템의 설계)

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Lim, C.M.;Lee, S.K.;Park, Y.K.;Park, J.C.;Lee, D.H.;Shin, J.K.;Ahn, C.B.;Park, M.S.;Hur, Y.;Hong, J.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.191-192
    • /
    • 1998
  • We report on the design of a low-noise 40 channel SQUID system for biomagnetism. We used low-noise SQUID sensor with the pickup coil integrated on the same wafer as the SQUID. The SQUID electronics were simplified by increasing the voltage output of the SQUID. The SQUID insert was designed to have low thermal load, minimizing the liquid helium loss. The digital signal processing provides versatile analysis tools and the software is based on the object-oriented programming. For the effective localization of the source location, solutions of the inverse problems based on the lead-field and the simulated anneal ins were studied.

  • PDF

Optimization of Laser Process Parameters for Realizing Optimal Via Holes for MEMS Devices (MEMS 소자의 비아 홀에 대한 레이저 공정변수의 최적화)

  • Park, Si-Beom;Lee, Chul-Jae;Kwon, Hui-June;Jun, Chan-Bong;Kang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1765-1771
    • /
    • 2010
  • In the case of micro.electro-mechanical system (MEMS) devices, the quality of punched via hole is one of the most important factors governing the performance of the device. The common features that affect the laser micromachining of via holes drilled by using Nd:$YVO_4$ laser are described, and efficient optimization methods to measure them are presented. The analysis methods involving an orthogonal array, analysis of variance (ANOVA), and response surface optimization are employed to determine the main effects and to determine the optimal laser process parameters. The significant laser process parameters were identified and their effects on the quality of via holes were studied. Finally, an experiment in which the optimal levels of the laser process parameters were used was carried out to demonstrate the effectiveness of the optimization method.

Deposition and Electrical Properties of Al2O3와 HfO2 Films Deposited by a New Technique of Proximity-Scan ALD (PS-ALD) (Proximity-Scan ALD (PS-ALD) 에 의한 Al2O3와 HfO2 박막증착 기술 및 박막의 전기적 특성)

  • Kwon, Yong-Soo;Lee, Mi-Young;Oh, Jae-Eung
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.148-152
    • /
    • 2008
  • A new cost-effective atomic layer deposition (ALD) technique, known as Proximity-Scan ALD (PS-ALD) was developed and its benefits were demonstrated by depositing $Al_2O_3$ and $HfO_2$ thin films using TMA and TEMAHf, respectively, as precursors. The system is consisted of two separate injectors for precursors and reactants that are placed near a heated substrate at a proximity of less than 1 cm. The bell-shaped injector chamber separated but close to the substrate forms a local chamber, maintaining higher pressure compared to the rest of chamber. Therefore, a system configuration with a rotating substrate gives the typical sequential deposition process of ALD under a continuous source flow without the need for gas switching. As the pressure required for the deposition is achieved in a small local volume, the need for an expensive metal organic (MO) source is reduced by a factor of approximately 100 concerning the volume ratio of local to total chambers. Under an optimized deposition condition, the deposition rates of $Al_2O_3$ and $HfO_2$ were $1.3\;{\AA}/cycle$ and $0.75\;{\AA}/cycle$, respectively, with dielectric constants of 9.4 and 23. A relatively short cycle time ($5{\sim}10\;sec$) due to the lack of the time-consuming "purging and pumping" process and the capability of multi-wafer processing of the proposed technology offer a very high through-put in addition to a lower cost.

Virtual Metrology for predicting $SiO_2$ Etch Rate Using Optical Emission Spectroscopy Data

  • Kim, Boom-Soo;Kang, Tae-Yoon;Chun, Sang-Hyun;Son, Seung-Nam;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.464-464
    • /
    • 2010
  • A few years ago, for maintaining high stability and production yield of production equipment in a semiconductor fab, on-line monitoring of wafers is required, so that semiconductor manufacturers are investigating a software based process controlling scheme known as virtual metrology (VM). As semiconductor technology develops, the cost of fabrication tool/facility has reached its budget limit, and reducing metrology cost can obviously help to keep semiconductor manufacturing cost. By virtue of prediction, VM enables wafer-level control (or even down to site level), reduces within-lot variability, and increases process capability, $C_{pk}$. In this research, we have practiced VM on $SiO_2$ etch rate with optical emission spectroscopy(OES) data acquired in-situ while the process parameters are simultaneously correlated. To build process model of $SiO_2$ via, we first performed a series of etch runs according to the statistically designed experiment, called design of experiments (DOE). OES data are automatically logged with etch rate, and some OES spectra that correlated with $SiO_2$ etch rate is selected. Once the feature of OES data is selected, the preprocessed OES spectra is then used for in-situ sensor based VM modeling. ICP-RIE using 葰.56MHz, manufactured by Plasmart, Ltd. is employed in this experiment, and single fiber-optic attached for in-situ OES data acquisition. Before applying statistical feature selection, empirical feature selection of OES data is initially performed in order not to fall in a statistical misleading, which causes from random noise or large variation of insignificantly correlated responses with process itself. The accuracy of the proposed VM is still need to be developed in order to successfully replace the existing metrology, but it is no doubt that VM can support engineering decision of "go or not go" in the consecutive processing step.

  • PDF

Silicon Nitride Layer Deposited at Low Temperature for Multicrystalline Solar Cell Application

  • Karunagaran, B.;Yoo, J.S.;Kim, D.Y.;Kim, Kyung-Hae;Dhungel, S.K.;Mangalaraj, D.;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.276-279
    • /
    • 2004
  • Plasma enhanced chemical vapor deposition (PECVD) of silicon nitride (SiN) is a proven technique for obtaining layers that meet the needs of surface passivation and anti-reflection coating. In addition, the deposition process appears to provoke bulk passivation as well due to diffusion of atomic hydrogen. This bulk passivation is an important advantage of PECVD deposition when compared to the conventional CVD techniques. A further advantage of PECVD is that the process takes place at a relatively low temperature of 300t, keeping the total thermal budget of the cell processing to a minimum. In this work SiN deposition was performed using a horizontal PECVD reactor system consisting of a long horizontal quartz tube that was radiantly heated. Special and long rectangular graphite plates served as both the electrodes to establish the plasma and holders of the wafers. The electrode configuration was designed to provide a uniform plasma environment for each wafer and to ensure the film uniformity. These horizontally oriented graphite electrodes were stacked parallel to one another, side by side, with alternating plates serving as power and ground electrodes for the RF power supply. The plasma was formed in the space between each pair of plates. Also this paper deals with the fabrication of multicrystalline silicon solar cells with PECVD SiN layers combined with high-throughput screen printing and RTP firing. Using this sequence we were able to obtain solar cells with an efficiency of 14% for polished multi crystalline Si wafers of size 125 m square.

  • PDF