• Title/Summary/Keyword: Wafer Cleaning

Search Result 172, Processing Time 0.021 seconds

Removal of Nano-scaled Fluorescence Particles on Wafer by the Femtosecond Laser Shockwave (펨토초레이저 충격파에 의한 형광 나노입자 제거)

  • Park, Jung-Kyu;Cho, Sung-Hak;Kim, Jae-Gu;Chang, Won-Seok;Whang, Kyung-Hyun;Yoo, Byung-Heon;Kim, Kwang-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.150-156
    • /
    • 2009
  • The removal of tiny particles adhered to surfaces is one of the crucial prerequisite for a further increase in IC fabrication, large area displays and for the process in nanotechnology. Various cleaning techniques (wet chemical cleaning, scrubbing, pressurized jets and ultrasonic processes) currently used to clean critical surfaces are limited to removal of micrometer-sized particles. Therefore the removal of sub-micron sized particles from silicon wafers is of great interest. For this purpose various cleaning methods are currently under investigation. In this paper, we report on experiments on the cleaning effect of 100nm sized fluorescence particles on silicon wafer using the plasma shockwave occurred by femtosecond laser. The plasma shockwave is main effect of femtosecond laser cleaning to remove particles. The removal efficiency was dependent on the gap distance between laser focus and surface but in some case surface was damaged by excessive laser intensity. These experiments demonstrate the feasibility of femtosecond laser cleaning using 100nm size fluorescence particles on wafer.

Analysis of First Wafer Effect for Si Etch Rate with Plasma Information Based Virtual Metrology (플라즈마 정보인자 기반 가상계측을 통한 Si 식각률의 첫 장 효과 분석)

  • Ryu, Sangwon;Kwon, Ji-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.146-150
    • /
    • 2021
  • Plasma information based virtual metrology (PI-VM) that predicts wafer-to-wafer etch rate variation after wet cleaning of plasma facing parts was developed. As input parameters, plasma information (PI) variables such as electron temperature, fluorine density and hydrogen density were extracted from optical emission spectroscopy (OES) data for etch plasma. The PI-VM model was trained by stepwise variable selection method and multi-linear regression method. The expected etch rate by PI-VM showed high correlation coefficient with measured etch rate from SEM image analysis. The PI-VM model revealed that the root cause of etch rate variation after the wet cleaning was desorption of hydrogen from the cleaned parts as hydrogen combined with fluorine and decreased etchant density and etch rate.

Development of Particle Deposition System for Cleaning Process Evaluation in Semiconductor Fabrication (반도체 세정 공정 평가를 위한 나노입자 안착 시스템 개발)

  • Nam, Kyung-Tag;Kim, Ho-Joong;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3168-3172
    • /
    • 2007
  • As the minimum feature size decreases, control of contamination by nanoparticles is getting more attention in semiconductor process. Cleaning technology which removes nanoparticles is essential to increase yield. A reference wafer on which particles with known size and number are deposited is needed to evaluate the cleaning process. We simulated particle trajectories in the chamber by using FLUENT and designed a particle deposition system which consists of scanning mobility particle sizer (SMPS) and deposition chamber. Charged monodisperse particles are generated using SMPS and deposited on the wafer by electrostatic force. The experimental results agreed with the simulation results well in terms of particle number and deposition area according to particle size, flow rate and deposition voltage.

  • PDF

Development of Particle Deposition System for Cleaning Process Evaluation in Semiconductor Fabrication (반도체 세정 공정 평가를 위한 나노입자 안착 시스템 개발)

  • Nam, Kyung-Tag;Kim, Young-Gil;Kim, Ho-Joong;Kim, Tae-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.49-52
    • /
    • 2007
  • As the minimum feature size decrease, control of contamination by nanoparticles is getting more attention in semiconductor process. Cleaning technology which removes nanoparticles is essential to increase yield. A reference wafer on which particles with known size and number are deposited is needed to evaluate the cleaning process. We simulated particle trajectories in the chamber by using FLUENT. Charged monodisperse particles are generated using SMPS (Scanning Mobility Particle Sizer) and deposited on the wafer by electrostatic force. The Experimental results agreed with the simulation results well. We calculate the particles loss in pipe flow theoretically and compare with the experimental results.

  • PDF

Silicon Intrinsic Gettering Technology: Understanding and Practice (실리콘 Intrinsic Gettering 기술의 이해와 응용)

  • Choe Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.9-12
    • /
    • 2004
  • Metallic impurities, such as Fe, Cu, and Au, become generation and recombination centers for minority carriers when combined with oxide precipitates or silicon self-interstitial clusters. As these centers may cause leakage and discharge in silicon devices, their prevention through gettering of the metallic impurities is an important issue. In this article, key aspects of intrinsic gettering, such as oxygen control, wafer cleaning, device area denudation, and bulk oxygen precipitation are discussed, and a practical method of implementing intrinsic gettering is outlined.

Semiconductor Wafer Cleaning and PR Strip Processes using Ozone (오존을 이용한 반도체 웨이퍼 세정 및 PR 제거 공정)

  • 채상훈;정현채;문세호;손영수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1089-1092
    • /
    • 2003
  • This paper has been studied on wafer cleaning and photoresist striping in semiconductor fabrication processes using ozone solved deionized water. In this work, we have developed high concentration ozone generating system and high contact ratio ozone solving system to get high efficiency DIO$_3$. Through this study, we obtained 11% ozone gas concentration, 99.5% of ozone efficiency and 51% of solubility in deionized water.

  • PDF

Wafer Position Recognition System Using Radial Shape Calibrator (방사형 캘리브레이터률 이용한 웨이퍼 위치 인식시스템)

  • Lee, Byeong-Guk;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.632-641
    • /
    • 2011
  • This paper presents a position error recognition system when the wafer is mounted in cleaning equipment among the wafer manufacturing processes. The proposed system is to enhance the performance in cost and reliability by preventing the wafer cleaning system from damaging by alerting it when it is put in correct position. The proposed algorithm is in obtaining a mapping function from camera and physical wafer by designing and manufacturing the radial shape calibrator to reduce the error by using the conventional chess board one. The system is to install in-line process using high reliable and high accurate position recognition. The experimental results show that the performance of the proposed system is better than that of the existing method for detecting errors within tolerance.

Optimization of FPD Cleaning System and Processing by Using a Two-Phase Flow Nozzle (이류체 노즐을 이용한 FPD 세정시스템 및 공정 개발)

  • Kim, Min-Su;Kim, Hyang-Ran;Kim, Hyun-Tae;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.429-433
    • /
    • 2014
  • As the fabrication technology used in FPDs(flat-panel displays) advances, the size of these panels is increasing and the pattern size is decreasing to the um range. Accordingly, a cleaning process during the FPD fabrication process is becoming more important to prevent yield reductions. The purpose of this study is to develop a FPD cleaning system and a cleaning process using a two-phase flow. The FPD cleaning system consists of two parts, one being a cleaning part which includes a two-phase flow nozzle, and the other being a drying part which includes an air-knife and a halogen lamp. To evaluate the particle removal efficiency by means of two-phase flow cleaning, silica particles $1.5{\mu}m$ in size were contaminated onto a six-inch silicon wafer and a four-inch glass wafer. We conducted cleaning processes under various conditions, i.e., DI water and nitrogen gas at different pressures, using a two-phase-flow nozzle with a gap distance between the nozzle and the substrate. The drying efficiency was also tested using the air-knife with a change in the gap distance between the air-knife and the substrate to remove the DI water which remained on the substrate after the two-phase-flow cleaning process. We obtained high efficiency in terms of particle removal as well as good drying efficiency through the optimized conditions of the two-phase-flow cleaning and air-knife processes.

Solubility Behavior of Ozone for Silicon Wafer Cleaning (실리콘 웨이퍼 세정을 위한 오존의 거동에 관한 연구)

  • Lee Gun-Ho;Kim In-Jung;Bae So-Ik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.13-17
    • /
    • 2005
  • The behavior of ozone in $NH_4OH$ was investigated to evaluate the solution as a cleaning chemical of the silicon wafer. The solubility of ozone in DI(Deionized) water increased as the oxygen flow-rate decreased and ozone generator power increased. Ozone in DI water showed solubility of 100 ppm or higher at room temperature. Ozone concentration was stabilized at the range of ${\pm}2ppm$ by controlling oxygen flow rate and ozone generator power. On the contrary, the solubility of ozone in $NH_4OH$ was very low and strongly depended on the concentration of $NH_4OH$ and pH. The redox potential of ozone was saturated within 10 minutes in DI water and decreased rapidly with the addition of $NH_4OH$. The behavior of ozone in $NH_4OH$ is well explained by redox potential calculation.

  • PDF

Design and Analysis of the Basic Components for the Semiconductor Wafer Cleaning Equipment Monitoring System (반도체 웨이퍼 세정 장비 모니터링 시스템을 위한 기본 요소의 분석 및 설계)

  • Kang, Ho-Seok;Rim, Seong-Rak
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.115-125
    • /
    • 2000
  • In this paper, we suggest the basic components of monitoring system for the semiconductor wafer cleaning equipment and a monitoring system model based on these components. Basic component is defined as a mandatory function which consists of communication with the control system, user interface, communication with the remote monitoring system, management of monitoring data and inter-task communication. We have defined the function of each component and the relation among them, and designed each component as a task. To evaluate the validity of the suggested model, we have implemented the basic components using the Visual C++ on Windows NT and applied them to the Monitoring System for the semiconductor wafer cleaning equipment.

  • PDF