• Title/Summary/Keyword: WPT

Search Result 183, Processing Time 0.024 seconds

Characteristics of Variable Wireless Charging System Applying Superconducting Coils (초전도 코일을 적용한 무선 충전시스템 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.804-808
    • /
    • 2018
  • Interest in wireless power transfer (WPT) has been growing recently due to the rapid increase in the use of electronic devices. Wireless charging systems are currently being applied to mobile phones and many studies are being conducted to apply wireless charging systems to various devices. The current wireless charging systems are capable of 1:1 charging. For wireless charging, when the devices with the same resonance frequency are present in the vicinity, the charging efficiency may be significantly lowered due to frequency interference or the wireless charging systems may stop operating. In this paper, variable capacitors were applied to a superconducting WPT system to solve the frequency interference among multiple devices with the same frequency. When a wireless charging system was performing 1:1 operation, the frequency of the other devices was varied using variable capacitors. As a result, it was confirmed that the highly efficient WPT is possible without frequency interference even when multiple receivers are present.

Standardized Design of the Transmitting Coils in Inductive Coupled Endoscope Robot Driving Systems

  • Ke, Quan;Jiang, Pingping;Yan, Guozheng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.835-847
    • /
    • 2017
  • A transmitting coil with an optimal topology and number of turns can effectively improve the performance of the wireless power transfer (WPT) systems for endoscope robots. This study proposes the evaluation parameters of the transmitting coils related to the performance of the WPT system to standardize the design of the transmitting coils. It considers both the quality factor of transmitting coils and the coupling factor between the two sides. Furthermore, an analytical model of transmitting coils with different topologies is built to exactly estimate the evaluation parameters. Several coils with the specified topologies are wound to verify the analytical model and the feasibility of evaluation parameters. In the case of a constant power received, the related evaluation parameters are proportional to the transfer efficiency of the WPT system. Therefore, the applicable frequency ranges of transmitting coils with different topologies are determined theoretically. Then a transmitting coil with a diameter of 69 cm is re-optimized both theoretically and experimentally. The transfer efficiency of the WPT system is increased from 3.58% to 7.37% with the maximum magnetic field intensity permitted by human tissue. Finally, the standardized design of the transmitting coil is achieved by summing-up and facilitating the optimization of the coils in various situations.

Method to Optimize Maximum Efficiency in MIMO WPT (MIMO WPT 시스템의 최대 효율을 위한 최적화 방법)

  • Lee, Hyeongwook;Boo, Seunghyun;Na, Sehun;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.286-289
    • /
    • 2019
  • In this paper, we proposed a method to control input powers and receiver loads for maximum efficiency in multiple-input multiple-output(MIMO) wireless power transfer(WPT) systems. The input voltage ratio between transmitters and receiver loads for maximum transfer efficiency is derived in terms of figure of merits. The theoretically derived input voltages for the transmitters and optimum loads for the receivers were found to be similar to those obtained by a genetic algorithm. We demonstrate the effectiveness of the theory using a few design examples. Using the results obtained from this study, effective and simplified designs of MIMO WPT systems will be possible.

The Strategy of Wireless Power Transfer for Light Rail Transit By Core Technologies Analysis Based on Text Mining

  • Meng, Xiang-Yu;Han, Young-Jae;Eum, Soo-Min;Cho, Sung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.193-201
    • /
    • 2018
  • In this paper, we extracted relevant patent data and conducted statistical analysis to understand the technical development trend related to Wireless Power Transfer (WPT) for Light Rail Transit (LRT). Recently, with the development of WPT technologies, the Light Rail Transit (LRT) industry is concentrating on applying WPT to the power supply system of trains because of their advantages compared wired counterpart, such as low maintenance cost and high stability. This technology is divided into three areas: wireless feeding and collecting technology, high-frequency power converter technology and orbital and infrastructure technology. From each specific area, key words in patent document were extracted by TF-IDF method and analyzed by social network. In the keyword network, core word of each specific technology were extracted according to their degree centrality. Then, the multi-word phrases were also built to represent the concept of core technologies. Finally, based on the analysis results, the development strategies for each specifics technical area of WPT in LRT filed will be provided.

Single-Stage AC/DC Converter for Wireless Power Transfer Operating With Robustness in Wide Air Gaps (넓은 공극에서 강인성을 가지고 동작하는 단일전력단 무선전력전송 교류-직류 컨버터)

  • Woo, Jeong-Won;Jang, Ki-Chan;Kim, Min-Ji;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • In the field of electric vehicles and AGVs, wireless power transfer (WPT) charging systems have been developed recently because of its convenience, reliability, and positive environmental impact due to cable and cord elimination. In this study, we propose a WPT charging system using a single stage AC-DC converter that can be reduced in size and weight and thus can ensure convenience. The proposed single-stage AC-DC converter can control a wide output voltage (36-54 VDC) within coupling ranges by using the variable link voltage applied to the WPT resonant circuit through phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype that can operate with an air gap range of 40-50 mm is fabricated and validated through experimental results and analysis.

Performance Analysis and Equivalent Circuit Extraction for Magnetic Resonance Type Wireless Power Transfer (자기공진방식 무선전력전송 등가회로 추출 및 특성 분석)

  • Park, Dae Kil;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In this paper, we propose a magnetic resonant WPT(wireless power transfer) scenario using a large coil resonating at 6.78 MHz, and compare the characteristics through a three-dimensional electromagnetic field simulation and a magnetic resonant WPT equivalent circuit. The magnetic resonant WPT equivalent circuit proposed in this paper considers the parasitic capacitance generated between the coils in addition to the conventional equivalent circuit. Based on this analysis, we fabricated the magnetic resonant WPT coil and compared it with simulation prediction. As a result of comparison, the transfer characteristics and the resonance frequency shift can be predicted. Error proposed characteristics of equivalent circuit for the magnetic resonant WPT and the measured values are estimated to be ${\Delta}{\mid}S11{\mid}=1.31dB$ and ${\Delta}{\mid}S21{\mid}=1.21dB$, respectively.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

Implementation of 1.7MHz, 25W Wireless Power Transmission(WPT) System using Coupled Magnetic Resonance (1.7MHz, 25W급 자기공명 무선전력 전송 시스템 구현)

  • Kim, Seong-Min;Cho, In-Gui;Moon, Jung-Ick
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.317-323
    • /
    • 2013
  • In this paper, 25W wireless power transmission(WPT) system using the coupled magnetic resonance is presented. The WPT system consists of a 100W class-F power transmitter, 1.7MHz magnetic resonators and a 40W full-bridge receiver using diodes. Especially, the transmit power control function using the 400MHz FSK communication between the transmitter and the receiver is adopted in the proposed system for the stable power transmission. Using the system and the power control function, the WPT system can be adopted in the various electronic devices and the commercialization of WPT system can be moved forward.

Analysis of Z-Source Inverters in Wireless Power Transfer Systems and Solutions for Accidental Shoot-Through State

  • Wang, Tianfeng;Liu, Xin;Jin, Nan;Ma, Dianguang;Yang, Xijun;Tang, Houjun;Ali, Muhammad;Hashmi, Khurram
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.931-943
    • /
    • 2018
  • Wireless power transfer (WPT) technology has been the focus of a lot of research due to its safety and convenience. The Z-source inverter (ZSI) was introduced into WPT systems to realize improved system performance. The ZSI regulates the dc-rail voltage in WPT systems without front-end converters and makes the inverter bridge immune to shoot-through states. However, when the WPT system is combined with a ZSI, the system parameters must be configured to prevent the ZSI from entering an "accidental shoot-through" (AST) state. This state can increase the THD and decrease system power and efficiency. This paper presents a mathematical analysis for the characteristics of a WPT system and a ZSI while addressing the causes of the AST state. To deal with this issue, the impact of the system parameters on the output are analyzed under two control algorithms and the primary compensation capacitance range is derived in detail. To validate the analysis, both simulations and experiments are carried out and the obtained results are presented.