Browse > Article
http://dx.doi.org/10.6113/JPE.2018.18.3.931

Analysis of Z-Source Inverters in Wireless Power Transfer Systems and Solutions for Accidental Shoot-Through State  

Wang, Tianfeng (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
Liu, Xin (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
Jin, Nan (College of Electric and Information Engineering, Zhengzhou University of Light Industry)
Ma, Dianguang (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
Yang, Xijun (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
Tang, Houjun (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
Ali, Muhammad (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
Hashmi, Khurram (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
Publication Information
Journal of Power Electronics / v.18, no.3, 2018 , pp. 931-943 More about this Journal
Abstract
Wireless power transfer (WPT) technology has been the focus of a lot of research due to its safety and convenience. The Z-source inverter (ZSI) was introduced into WPT systems to realize improved system performance. The ZSI regulates the dc-rail voltage in WPT systems without front-end converters and makes the inverter bridge immune to shoot-through states. However, when the WPT system is combined with a ZSI, the system parameters must be configured to prevent the ZSI from entering an "accidental shoot-through" (AST) state. This state can increase the THD and decrease system power and efficiency. This paper presents a mathematical analysis for the characteristics of a WPT system and a ZSI while addressing the causes of the AST state. To deal with this issue, the impact of the system parameters on the output are analyzed under two control algorithms and the primary compensation capacitance range is derived in detail. To validate the analysis, both simulations and experiments are carried out and the obtained results are presented.
Keywords
Accidental shoot-through; Parameter design; Wireless power transfer; Z-source inverter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Shen and F. Peng, "Operation modes and characteristics of the Z-source inverter with small inductance or low power factor," IEEE Trans. Ind. Electron., Vol. 55, No.1, pp. 89-96, Jan. 2008.   DOI
2 J. Burdio, L. Barragan, F. Monterde, D. Navarro, and J. Acero, “Asymmetrical voltage-cancellation control for full-bridge series resonant inverters,” IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 461-469, Mar. 2004.   DOI
3 R. Mosobi, T. Chichi, and S. Gao, "Modeling and power quality analysis of integrated renewable energy system," in National Power Systems Conference (NPSC), pp. 1-6, 2014.
4 P. Penkey, F. Alhajeri, and B. K. Johnson, "Modeling, analysis and detection of faults in grid-connected PV systems," in Intelligent Systems and Control (ISCO), pp. 1-5, 2016.
5 F. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar. 2003.   DOI
6 S. Rajakaruna and L. Jayawickrama, “Steady-state analysis and designing impedance network of z-source inverters,” IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2483-2491, Jul. 2010.   DOI
7 H. Cha, F. Peng, and D. Yoo, "Z-source resonant DC-DC converter for wide input voltage and load variation," in Power Electronics Conference (IPEC), pp. 995-1000, 2010.
8 H. Zeng and F. Z. Peng, “SiC based z-source resonant converter with constant frequency and load regulation for EV wireless charger,” IEEE Trans. Power Electron., Vol. 32, No. 11, pp. 8813-8822, Nov. 2017.   DOI
9 T. Wang, X. Liu, H. Tang, Y. Dong, and X. Yang, "Modeling and advanced control of wireless power transfer system with Z-source inverter," in 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), pp. 1-6, 2016.
10 T. Wang, X. Liu, H. Tang, and M. Ali, “Modification of the wireless power transfer system with Z-source inverter,” IET Electron. Letters, Vol. 53, No. 2, pp. 106-108, Jan. 2017.   DOI
11 J. T. Boys and G. A. Covic, "The Inductive Power Transfer Story at the University of Auckland," IEEE Circuits Syst. Mag., Vol. 15, No.2, pp. 6-27, May 2015.   DOI
12 N. Gonzalez-Santini, H. Zeng, Y. Yu, and F. Peng, “Z-Source resonant converter with power factor correction for wireless power transfer applications,” IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7691-7700, Apr. 2016.   DOI
13 M. K. Nguyen, Y. G. Jung, and Y. C. Lim, "Single-phase Z-source AC/AC converter with wide range output voltage operation," J. Power Electron., Vol. 9, No.5, pp. 736-747, Sep. 2009.
14 L. Sun, H. Tang, and C. Yao, “Investigating the frequency for load-independent output voltage in three-coil inductive power transfer system,” Int. J. Circ. Theor. Appl, Vol. 44, No. 6, pp. 1341-1348, Aug. 2015.   DOI
15 L. Zhang, X. Yang, W. Chen, and X. Yao, “An isolated soft-switching bidirectional buck-boost inverter for fuel cell applications,” J. Power Electron., Vol. 10, No. 3, pp. 235-244, May 2010.   DOI
16 A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, pp. 83-86, Jul. 2007.   DOI
17 H. Vazquez-Leal, A. Gallardo-Del-Angel, and R. Castaneda-Sheissa, "The Phenomenon of Wireless Energy Transfer: Experiments and Philosophy," in Wireless Power Transfer - Principles and Engineering Explorations, InTech, Chap. 1, pp. 1-18, 2012.
18 R. Melki and B. Moslem, "Optimizing the design parameters of a wireless power transfer system for maximizing power transfer efficiency: A simulation study," in Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), pp. 278-282, 2015.
19 B. Kallel, O. Kanoun, T. Keutel, and C. Viehweger, "Improvement of the efficiency of MISO configuration in inductive power transmission in case of coils misalignment," in Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pp. 856-861, 2014.
20 X. Wang, H. Zhang, and Y. Liu, "Analysis on the efficiency of magnetic resonance coupling wireless charging for electric vehicles," in Cyber Technology in Automation, Control and Intelligent Systems (CYBER), pp. 191-194, 2013.
21 H. Feng, T. Cai, S. Duan, J. Zhao, X. Zhang, and C. Chen, “An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer,” IEEE Trans. Ind. Electron., Vol. 63, No. 10, pp. 6591-6601, Oct. 2016.   DOI
22 M. Fu, T. Zhang, C. Ma, and X. Zhang, “Efficiency and Optimal Loads Analysis for Multiple-Receiver Wireless Power Transfer Systems,” IEEE Trans. Microw. Theory Techn., Vol. 63, No. 3, pp. 801-812, Mar. 2015.   DOI
23 Z. Low, R. Chinga, R. Tseng, and J. Lin, “Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1801-1812, May 2009.   DOI
24 O. Jonah, S. V. Georgakopoulos, D. Daerhan, and Y. Shun, "Misalignment-insensitive wireless power transfer via strongly coupled magnetic resonance principles," in Antennas and Propagation Society International Symposium (APSURSI), pp. 1343-1344, 2014.
25 Y. Liu, A. Haitham, B. Gao, F. Blaabjerg, O. Ellabban, and P. Loh, "Design of Z-Source and Quasi-Z-Source Inverters," in Impedance Source Power Electronic Converters, John Wiley & Sons, Chap 13, pp. 226-243, 2016.
26 N. Kuyvenhoven, C. Dean, J. Melton, J. Schwannecke, and A. Umenei, "Development of a foreign object detection and analysis method for wireless power systems," in Product Compliance Engineering (PSES) Proceedings, pp. 1-6, 2011.
27 G. Jang, S. Jeong, H. Kwak, and C. Rim, "Metal object detection circuit with non-overlapped coils for wireless EV chargers," in Southern Power Electronics Conference (SPEC), pp. 1-6, 2016.
28 L. Tan, S. Pan, C. Xu, C. Yan, H. Liu, and X. Huang, “Study of constant current-constant voltage output wireless charging system based on compound topologies,” J. Power Electron., Vol. 17, No. 4, pp. 1109-1116, Jul. 2017.   DOI