• Title/Summary/Keyword: WIM system

Search Result 53, Processing Time 0.022 seconds

A Research for Improvement of WIM System by Abnormal Driving Patterns Analysis (비정상 주행패턴 분석을 통한 WIM 시스템 개선 연구)

  • Park, Je-U;Kim, Young-Back;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.59-72
    • /
    • 2010
  • WIM(Weigh-In-Motion) is the system measuring the weight of the vehicle with a high-speed. In the existing WIM system, vehicle weight is measured based on the constant speed and the error ratio has 10%. However, because of measuring the driving pattern, that is abnormal driving pattern which is like the acceleration and down-shift of the drivers, it has the error ratio which is bigger than the real. In order to it reduces the error ratio of WIM system, the improved WIM system needs to find the abnormal driving pattern. In order to reducing the error ratio of these WIM systems, the improved WIM system can find abnormal driving patterns. In this paper, the improved WIM system which analyzes the abnormality driving pattern influencing on the error ratio of WIM system of an existing and minimizes the error span is designed. The improved WIM system has the multi step loop structure of adding the loop sensor to an existing system. In addition, the measure function defined as an intrinsic is improved and the weight measured by the abnormal driving pattern is amended. The analysis of experiment result improved WIM system can know the fact that the error span reduces by 8% less than in the existing the maximum average sampling error 22.98%.

A Study on the Development of Overload Detecting Pad for Low Speed WIM System (저속 WIM 시스템용 과적검지 패드 개발에 관한 연구)

  • Lee, Choon-Man;Choi, Young-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.179-184
    • /
    • 2017
  • Recently, traffic accidents and damage on the highway have increased because of overloaded vehicles. The existing overload-detecting system has a low accuracy rate. An overload-detecting system using a weigh-in-motion (WIM) system has been developed to solve this problem. The WIM system can be used to detect overloaded vehicles by measuring the weight of the vehicles. The WIM system is divided into high-speed and low-speed types. The inaccuracy rate in the low-speed WIM system results mainly from the low response rate of the sensor when the velocity is moving at more than 20 km/h. In this study, a low-speed overload-detecting pad with a hydraulic structure using a WIM system was developed to make the system more accurate. The structural and formal analysis was carried out by using a finite element method (FEM) in order to analyze the structural stability and the extrusion velocity of the system. In addition, a static load test was performed to confirm the linearity and accuracy of the pad.

Experimental Analysis of Weigh-in-Motion Sensor Installed Post-Tensioned Concrete Pavement Behavior (고속축중계가 설치된 포스트텐션 콘크리트 포장의 실험적 거동 분석)

  • Park, Hee-Beom;Bae, Jong-Oh;Kim, Seong-Min;An, Zu-Og
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 2010
  • This research was conducted to analyze the behavior of the post-tensioned concrete pavement (PTCP) system in which weigh-in-motion (WIM) sensors were installed. One lane of PTCP was constructed after removing the existing asphalt pavement. The frictional resistance between the slab and the underlying layer should be small enough for the PTCP slab to properly have prestresses by tensioning. By performing an experimental construction of PTCP, the friction effects and the longitudinal displacements of PTCP under environmental loads were investigated. Based on the knowledge obtained from the experiments, the actual PTCP sections including WIM sensors were constructed and the curling behavior of the system was investigated. As a result, the behavior of the PTCP system was not affected by the existence of WIM sensors, and the appropriate PTCP system when installing WIM sensors in it could be developed.

Calibration Method of Vehicle Weight Data from Weigh-In-Motion System According to Temperature Effects (온도의 영향에 대한 Weigh-In-Motion 시스템의 차량중량자료 보정기법)

  • Hwan, Eui-Seung;Lee, Sang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.187-196
    • /
    • 2010
  • The purpose of this study is to develop the calibration method for temperature effects to improve the accuracy of the Weigh-In-Motion(WIM) system for collecting long-term truck weight data. WIM system was installed at a location where the truck traffic volume is high and weight data has been collected from January 2010. In this study, as a calibration measure, the first axle weight of Truck Type 10, the semi tractor-trailer is used based on the fact that the first axle weight is relatively constant, independent of the cargo weight. From this fact, calibration equations are developed from the relationship between the axle weight and the temperature(daily mean, maximum and minimum). Analysis on calibrated weight data shows adequacy of the proposed calibration method. Results of this study can be used to improve the accuracy of the WIM system and to carry out more rational design of pavement and bridge structures.

Development of WIM System Using Digital Loadcell (디지털 로드셀을 이용한 WIM 시스템의 개발)

  • Park, Chan-Won;Jeon, Chan-Min;Park, Heung-Joon
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.55-61
    • /
    • 2003
  • In this study, a signal processing and related techniques for development of a weight measuring system using a digital loadcell which is able to satisfy the important properties of WIM (weighing-in-motion) system have been investigated. A fast and high accurate signal processing of the digital load cell sensor for weighing-in-motion system is presented. A/D conversion system is constructed to realize a stable A/D conversion and signal processing algorithm using DSP and microprocessor. A new technique for vibration and measuring speed of the system is also investigated. The proposed method was applied to the actual design and the experimental results showed good performance of the weighing speed and stability.

  • PDF

Numerical Verification of B-WIM System Using Reaction Force Signals

  • Chang, Sung-Jin;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 2012
  • Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis.

A Study on Determination of WIM Sensor for Implementation of U-Overloaded Vehicle Regulation System (U-중차량 무인과적 단속시스템 구현을 위한 WIM Sensor 산정에 관한 연구)

  • Choi, Hae-Yun;Chang, Jeong-Hee;Jo, Byung-Wan;Yun, Suck-Min;Oh, Yoong-Kok;Lee, Kyu-Wan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.825-830
    • /
    • 2007
  • For the design and maintenance of highways and road structures, the statistical data are needed for the vehicle, especially heavy truck crossing. So far, static weighing has been used but it needs fixed station, crews, and it takes a lot of time. Also truck mix and headway distances cannot be obtained. Weigh-In-Motion system uses the sensor as a weighing scale and collects the axle weights, axle distances, vehicle types and etc. without stopping or slowing down the vehicle. Objectives of the study is make a determination of WIM Sensor for Implementation of U-Overloaded Vehicle Regulation System.

  • PDF

Overloading Control Effectiveness of Overweight Enforcement System using High-Speed Weigh-In-Motion (고속축중기를 활용한 과적단속시스템의 과적 억제효과 분석)

  • Kwon, Soon-Min;Jung, Young-Yoon;Lee, Kyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.179-188
    • /
    • 2012
  • PURPOSES: The aim of this study is to analyze overloading control effectiveness of enforcing overweighted vehicles using HS-WIM (High-Speed Weigh-in-Motion) at main lane of expressway. METHODS: To analyze the weight distribution statistically, HS-WIM system should has an appropriate weighing accuracy. Thus, the weighing accuracy of the two HS-WIM systems was estimated by applying European specifications and ASTM (American Standards for Testing and Materials) for WIM in this study. Based on the results of accuracy test, overweight enforcement system has been operated at main lanes of two expressway routes in order to provide weight informations of overweighted vehicle in real time for enforcement squad. To evaluate the overloading control effectiveness with enforcement, traffic volume and axle loads of trucks for two months at the right after beginning of the enforcement were compared with data set for same periods before the enforcement. RESULTS: As the results of weighing accuracy test, both WIM systems were accepted to the most precise type that can be useful to applicate not only statistical purpose but enforcing on overweight vehicles directly. After the enforcement, the rate of overweighted trucks that weighed over enforcement limits had been decreased by 27% compared with the rate before the enforcement. Especially, the rate of overweighted trucks that weighed over 48 tons had been decreased by 91%. On the other hand, in counterpoint to decrease of the overweighted vehicle, the rate of trucks that weighed under enforcement limits had been increased by 7%. CONCLUSIONS: From the results, it is quite clear that overloading has been controlled since the beginning of the enforcement.

A Study on Development of U-Manless Overload Regulation System (U-중차량 무인과적단속시스템 구축방안에 대한 연구)

  • Jo, Byung-Wan;Kim, Do-Keun;Choi, Hae-Yun;Park, Jung-Hun;Yoon, Suk-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.387-392
    • /
    • 2007
  • Overloaded Vehicles are one of biggest of hazard in durability decrease of roads and bridges. Thus, regulation was put in force about overloaded vehicles to reserve this problem. However, existing system had many problems. For these reasons, this paper presents solutions of U-intelligent overload vehicles regulation system based on manless and wireless for fixing of problems of existing system and construction of u-lTS. With this in mind, we studied about composition method of system, applications of USN, design of system controller, WCDMA/HSDPA and we verified performance of WIM Sensors in this paper.