• Title/Summary/Keyword: WIG ship

Search Result 22, Processing Time 0.063 seconds

State-of-the-Art of WIG(Wing-In-Ground Effect) Ships and Application of the Computational Fluid Dynamics (위그선 연구현황과 전산유체역학의 응용)

  • Kang Kuk-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.14-19
    • /
    • 2005
  • The paper introduces the state-of-the art of WIG ship and application field of the CFD to WIG ship development. WIG ships are highly efficient and fast transport vehicles which take advantage of benefits of ground effect. Chapter 1 describes the characteristics of WIG ship. Chapter 2 reviews the research works of Russia, German, Chinese, Korea and etc. Chapter 3 explains the kind of WIG ship categorized by the main operational mode and take-off system. Chapter 4 describes about the application field of CFD to WIG ship development procedure.

  • PDF

A Study on the Structure Strength of Wing In Ground effect Ship (표면 효과익선(WIG)의 구조 강도에 관한 연구)

  • 고재용;박석주;정성호;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.95-100
    • /
    • 2002
  • The wing in ground effect (WIG) ship is an energy saying vessel that uses the lift from its air-wing along with the lift increase from the ground effect by flying low above the sea surface. The WIG Ship should consist of thin plate in order to float on the sea and to fly in the air. Therefore, the structure of WIG, Ship has very thin and light shell plate and stiffener like stringer and frame has comparatively large cross section area. This structure makes shell plate nearly pure shear field when shell plate is pressed by in-plane load. This complex thin plate structure of WIG Ship can he considered as a closed section beam which makes it possible to analyze structure response of WIG Ship affected by shear load and bending load. In this respect, the present study will show basic theory for analysing shear stress and focus on the analysis of structure strength of model WIC Ship's wing.

  • PDF

Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm (지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화)

  • Lee, Ju-Hee;You, Keun-Yeal;Park, Kyoung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

A Study on Legal Comparison Review of the Pilot's License System of WIG Ship(surface-flying ship) and Pilot Certification System of Aircraft (수면비행선박 조종사 면허제도와 항공기 조종사 자격증명제도의 법적 비교 검토)

  • Park, Sang-Yong
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.95-126
    • /
    • 2020
  • In 2017, the world's first WIG ship (WIG: Wing In-Ground) pilot's license written test was conducted in Korea. The WIG ship is a ship that combines the characteristics of ships and airplanes. Therefore, the pilot of the WIG ship was allowed to apply only for those who had the aircraft pilot's license and the 6th class marine nautical license. The WIG ship pilot's license system was first introduced by Korea, so there are no international standards for the license system, and the introduction of a domestic qualification system also requires institutional arrangements due to various restrictions such as pilot training. However, in order to become a valuable industry as a future growth engine for the ocean, several urgent problems need to be solved, and that is the training of manpower for WIG ships. Therefore, I reviewed the institutional issues related to pilot training as this subject. Since 2001, various countries around the world have been discussing this issue, centering on IMO, and Korea has continued to participate and cooperate in IMO meetings. And the national qualification test for surface flying ships was conducted in Korea from 2011. However, there are still problems to be solved, and I pointed out the advancement of the manpower training system, the education and training system, and the designated national educational institution system. As a solution to this, it was suggested through the improvement of the license system and the operation of designated educational institutions. Among these solutions, I believe that the best way is to entrust the operation of designated national educational institutions to private educational institutions. However, I propose a plan that the government entrusts to private educational institutions, but the government is responsible for licensing and supervision. WIG ship will be a new market for the aviation industry and aviation workers.

Systems Engineering Application of Imaginary WIG(Wing-In-Ground Effect) Ship Acquisition Project (가상 함정획득사업의 Systems Engineering 적용 (INCOSE SE Handbook ver. 3.1 중심으로))

  • Lee, Su Oek;Shin, Seung Chun;Choi, Nag Jun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • The purpose of Defense Acquisition Project is that the superior weapons validated needs and performance are supplied to military user with limited financial resources and time. The Warship Acquisition Project is not only like this, But also has special characteristics of long project period and first-constructed ship's operation employment. So, The Warship Acquisition Project need systematic and efficient procedure & management. And this paper researches System engineering application of imaginary WIG(Wing-In-Ground Effect) ship acquisition project based Systems Engineering Handbook ver.3.1 published by INCOSE, the lead of field. The Imaginary WIG(Wing-In-Ground Effect) ship acquisition project applied the four processes(technical project, Enterprise & Agreement, Enabling Systems), the basis of INCOSE Engineering Handbook ver.3.1, and the each process output compared with DAPA(Defense Acquisition Program Administration)'s warship acquisition procedure.

  • PDF

The Safety Assessment of Small WIG Craft in the 20-Passenger Class (20인승급 소형 위그선의 안전성 평가)

  • Lee, Soon-Sup;Lee, Jong-Kap
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.179-188
    • /
    • 2009
  • WIG crafts are a high speed vessel with features of dynamic supported craft. These crafts, which are predominantly of light weight and operate any substantially greater speeds than conventional craft such as bulk carrier, tanker, container ship, etc., could not be accommodated under traditional maritime safety instruments. It means that there is the need for risk and safety levels to be assessed on a holistic basis, recognizing that high levels of operator training, comprehensive and thoroughly implemented procedures, high levels of automation and sophisticated software can all make significant contributions to risk reduction. To response this requirement, the Interim Guideline for WIG craft(MSC/Circ.1054) were developed in the view of the configuration of WIG craft, which fall between the maritime and aviation regulatory regimes. This paper reviews a safety assessment process and methodology to be used in the design phase of a new ship. The process and methodology is based on the risk-based approach and is applied to safety assessment in concept development phase of small WIG craft in the 20-person class.

Numerical study of wing in ground effects of the WIG ship (WIG선의 해면효과에 대한 수치적 접근 및 고찰)

  • Im, Uk-Jae;Park, Se-Wan;Lee, Hui-Beom
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.25-28
    • /
    • 2012
  • 항공기가 지면 혹은 해면 위를 낮게 비행할 때 양력이 증가하고 항력이 감소하는 이른바 해면 효과(ground effect)가 발생하게 된다. 위그선 (WIG)선은 이러한 해면 효과를 이용한 선박으로 시속 100~500km의 속도 범위에서 해면 위를 낮게 비행하는 선박을 뜻하며 차세대 초고속 해상 수송수단으로 떠오르고 있다. 본 연구에서는 해면효과로 인한 2차원 위그선 날개 주위의 양항력 변화를 알아보기 위하여 유한체적법 기반의 EDISON-CFD를 사용하였다. 위그선 날개 주위의 유동은 날개와 해면사이의 거리에 영향을 받으므로 날개와 해면사이의 거리에 따른 계산 영역과 격자를 각각 생성 하였다. 본 연구를 통해 날개와 해면 사이의 거리가 가까워 질수록 해면효과에 의하여 위그선 날개의 양력이 증가하였고 항력은 감소되는 결과를 확인할 수 있었다.

  • PDF

The Functional Safety Assessment of WIG Craft in Design Stage (위그선 설계단계에서의 안전성 평가)

  • Lee, Soon-Sup;Park, Beom-Jin;Lee, Jong-Kap
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.103-108
    • /
    • 2010
  • WIG crafts are high speed vessels with the features of a dynamic supported craft. These crafts, which are predominantly lightweight and operate at substantially greater speeds than conventional craft, could not be accommodated under traditional maritime safety instruments. WIG crafts inherently possess more hazard factors than conventional ships because of their relatively high speed, lightweight, and navigational characteristics, and an accident is likely to cause damage to the ship and a high loss of life. Because WIG crafts are composed of many systems and subsystems, the safety assessment of a WIG must use a commercial software system in the design stage. This paper reviews a safety assessment process and methodology proposed by the IMO interim guideline, which were developed in view of the configuration of WIG crafts. This safety assessment system was developed to fit the WIG's safety assessment process using a reliability analysis system widely used in commercial systems. The FHA was performed on the functional hazards of systems in the conceptual design stage.